PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Study on the floc-bubble adhesion behavior of hematite in static flow field

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
To investigate the adhesion of hematite flocs to gas bubbles in floc floatation, this paper develops an observation system for floc-bubble collision and adhesion with two charge-coupled device (CCD) cameras. The sizes of flocs and bubble were 45.36μm and 0.90mm, respectively, and the distance between a floc and the bubble center (sedimentation distance) was set to 0.25cm. Three surfactants, namely, sodium oleate, lauryl amine and sodium dodecyl sulfate (SDS), were selected for our research. Several experiments were conducted to disclose how surfactant concentration and pH affect the surface adhesion between hematite flocs and bubbles. Then, the adhesion mechanism was discussed in details based on the experimental results. The results show that the highest adhesion probability was achieved for the said floc and bubble at the lauryl amine concentration of 8mg/L, the sedimentation distance of 0.25cm and the pH of 9. After touching the bubble, the hermamite floc slid on the bubble surface, forming a stable three-phase interface after 67ms. Then, the radial position of the floc no longer changed, despite the floc motion on the bubble surface. According to the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory and the potential energy of the van der Waals force, there was a repulsive force between the floc and the bubble in the absence of surfactant and an attractive force in the presence of the surfactant of lauryl amine. In addition, a thin solvation shell is conducive to the adhesion between the floc and the bubble.
Rocznik
Strony
124--133
Opis fizyczny
Bibliogr. 26 poz., tab., rys.
Twórcy
autor
  • College of Mining Engineering, North China University of science and technology, Tangshan 063210, China
autor
  • College of Mining Engineering, North China University of science and technology, Tangshan 063210, China
autor
  • College of Mining Engineering, North China University of science and technology, Tangshan 063210, China
autor
  • College of Mining Engineering, North China University of science and technology, Tangshan 063210, China
autor
  • College of Mining Engineering, North China University of science and technology, Tangshan 063210, China
Bibliografia
  • AHMADI, R., KHODADADI, D.A., ABDOLLAHY, M., FAN, M., 2014. Nano-microbubble flotation of fine and ultrafine chalcopyrite particles. International Journal of Mining Science and Technology. 24(7), 559–566.
  • CHENG, P.F., SUN, W., HU, Y.H., LIU, R.Q., 2018. Effect and mechanism of frothers on flotation of fine serpentine. Journal of Central South University. 49(2), 261-267.
  • DERJAGUIN, B.V., DUKHIN, S.S., RULYOV, N.N., 1984. Kinetic Theory of Flotation of Small Particles. Russ. Chem. Rev. 51(1), 51-67.
  • HASSANZADEH, A., HASSAS, B, V., KOUACHI, S., BRABCOVA, Z., CELIK, M.S., 2016. Effect of bubble size and velocity on collision efficiency in chalcopyrite flotation. Colloid. Surface. A. 498, 258-267.
  • JAMESON G.J., NAM, S., YOUNG, M.M., 1977. Physical factors affecting recovery rates in flotation. Miner. Sci. Eng. 9(3), 103−118.
  • JIANG, Z.W., LI, Y.Z., 1993. A theoretical study of the collision velocity between particle and bubble in flotation. Journal of China University of Mining & Technology. 22(1), 73-78.
  • JORGE, R., HEINZ, H., 1993. The process of separation of fine mineral particles by flotation with hydrophobic polymeric carrier. International Journal of Mineral Processing. 37(1), 109-122.
  • KOUACHI, S., BOUHENGUEL, M., AMIRECH, A., BOUCHEMMA, A., 2010. Yoon-Luttrell collision and attachment models analysis in flotation and their application on general flotation kinetic model. Desalination. 264(3), 228-235.
  • KOH, P.T.L., SMITH, L.K., 2011. The effect of stirring speed and induction time on flotation. Minerals Engineering. 24(5), 442-448.
  • KRALCHEVSKY, P.A., BONEVA, M.P., DANOV. K.D., CHRISTOV, N.C., 2009. Attraction between particles at a liquid interface due to the interplay of gravity- and electric-field-induced interfacial deformations. Langmuir. 25(16), 9129−9139.
  • NGUYEN, A.V., 1999.Hydrodynamics of liquid flows around air bubbles in flotation: a review. International Journal of Mineral Processing. 56(1-4), 165−205.
  • NGUYEN, A.V., EVANS G.M., 2004. Attachment interaction between air bubbles and particles in froth flotation. Exp. Therm. Fluid. Sci. 28(5), 381−385.
  • NGUYEN, A.V., NALASKOWSKI, J., MILLER, J.D., 2003. A study of bubble-particle interaction using atomic force microscopy. Minerals Engineering. 16(11), 1173−1181.
  • NGUYEN, A.V., EVANS, G.M., 2004. Attachment interaction between air bubbles and particles in froth flotation. Experimental Thermal and Fluid Science. 28(5), 381-385.
  • RAHMAN, A., AHMAD, K.D., MAHMOUD, A., FAN, M.M., 2014. Nano-microbubble flotation of fine and ultrafine chalcopyrite particles. International Journal of Mining Science and Technology. 24(4), 559-566.
  • SCHULZE, H.J., 1989. Hydrodynamics of bubble-mineral particle collisions. Mineral Processing and Extractive Metallurgy Review. 5(1−4), 43−76.
  • SHAHBAZI, B., REZAI, B., JAVAD KOLEINI, S.M., 2010. Bubble-particle collision and attachment probability on fine particles flotation. Chemical Engineering and Processing. 49(6), 622-627.
  • SHI, R.D., GRIFFIN, W.L., O’ REILLY, S.Y., HUANG, Q.S., LIU, D.L., GONG, X.H., CHENG, S.S., WU, K., YI, G. D. 2015. Ophiolitic Chromitites Originated from Ancient SCLM. Acta. Geol. Sin-Engl. 89(2), 84.
  • SIVAMOHAN, R. 1990. The problem of recovering very fine particles in mineral processing-A review. International Journal of Mineral Processing. 28(3), 247-288.
  • SONG, S.X., LI, C.G., CUI, H. S., 2007. Theory and application of fine-grained mineral flocs flotation. Minerals Engineering. (5), 4-9.
  • TIAN, J., XU, L.H., YANG, Y.H., LIU, J., ZENG, X.B., DENG, W. 2017. Selective flotation separation of ilmenite from titanaugite using mixed anionic/cationic collectors. International Journal of Mineral Processing. 166, 102-107.
  • WANG, X.L., REN, S.L., FU, Y.N. 2016. Three-dimensional orbit and physical parameters of HD 6840. Res. Astron. Astrophys. 16(2), 1-6.
  • WANG, W., ZHOU, Z., NANDAKUMAR, K., XU, Z., MASLIYAH, J.H. 2003. Attachment of individual particles to a stationary air bubble in model systems. International Journal of Mineral Processing.68(1), 47-69.
  • WANG, W., ZHOU, Z., NANDAKUMAR, K., XU, Z., MASLIYAH, J.H. 2003. Effect of surface mobility on the particle sliding along a bubble or a solid sphere.Journal of Colloid and Interface Science. 259(1), 81-88.
  • WU, H.Q., TIAN, J., XU, L.H., FANG, S., ZHANG, Z.Y., CHI, R. 2018. Flotation and adsorption of a new mixed anionic/cationic collector in the spodumene-feldspar system. Minerals Engineering. 127, 42-47.
  • ZHANG, T., QIN, W.Q., YANG, C.R., Huang, S.P., 2014.Floc flotation of marmatite fines in aqueous suspensions induced by butyl xanthate and ammonium dibutyl dithiophosphate. Transactions of Nonferrous Metals Society of China. 24(5), 1578-1586.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7087a356-a971-4ce7-9924-b63c8cf934c2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.