PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Uranium and polonium activities in karst water of the Niedźwiedzia Cave system (Sudety Mts.)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Polonium and uranium activities were measured in surface and karst water in the Kleśnica Stream catchment and the Niedźwiedzia Cave system (Sudety Mts., South-West Poland). The highest polonium concentration was recorded in surface water during flood events and in a sinter pool, located close to the touristic trail inside the cave. It points to a detrital source of the polonium and its transport in water absorbed by the clay fraction. Uranium activity increases downstream in the surface water of the Kleśnica Stream, indicating significant input of 234U and 238U from an area of outcropping marble. Water, autochthonous in the marble, that originated from precipitation and infiltration directly into the cave system is characterized by low uranium content. However, the uranium activity increases with the time of water percolation in the soil and epikarst zone and is higher at the lower cave level than at the upper and middle levels. Po and U activities were used as tracers for the area of water recharge and the mode of circulation. The results point to atmospheric precipitation as the almost exclusive source of water at the upper and middle cave levels, while water at the active level of the cave is a mixture of precipitation, infiltrating directly from the area above the cave passages, and horizontal flow, originating out of the marble outcrop.
Rocznik
Strony
505--512
Opis fizyczny
Bibliogr. 42 poz., wykr.
Twórcy
  • Institute of Geological Sciences, Polish Academy of Sciences, Research Centre in Warsaw, Twarda St. 51/55, Warszawa
  • Institute of Geological Sciences, Polish Academy of Sciences, Research Centre in Warsaw, Twarda St. 51/55, Warszawa
  • Institute of Geological Sciences, Polish Academy of Sciences, Research Centre in Warsaw, Twarda St. 51/55, Warszawa
autor
  • Institute of Geological Sciences, Polish Academy of Sciences, Research Centre in Warsaw, Twarda St. 51/55, Warszawa
Bibliografia
  • 1. Andersen, M. B., Erel, Y. & Bourdon, B., 2009. Experimental evidence for 234U-238U fractionation during granite weathering with implications for 234U/238U in natural waters. Geochimica et Cosmochimica Acta, 73: 4124-4141.
  • 2. Banaś, M., 1965. Signs of mineralization in the metamorphic complex of Śnieżnik Kłodzki (Sudetes Mts.) Prace Geologiczne, Polska Akademia Nauk Oddział w Krakowie, 27: 291-294. [In Polish, with English summary.]
  • 3. Be, M. M., Chrite, V., Dulieu, C., Mougeot, X., Browne, E., Baglin, C., Chechev, V. P., Egorov, A., Kuzmenko, N. K., Sergeev, V. O., Kondev, F. G., Luca, A., Galán, M., Huang, X., Wang, B., Helmer, R. G., Schonfeld, E., Dersch, R., Vanin, V. R., de Castro, R. M., Nichols, A. L., MacMahon, T. D., Pearce, A., Arinc, A., Lee, K. B. & Wu, S. C., 2010. Table of Radionuclides Monographie. BIPM-5. Bureau International des Poids et Mesures, Sèvres, 228 pp.
  • 4. Benedik, L., Vasile, M., Spasova, Y. & Watjen, U., 2009. Sequential determination of 210Po and uranium radioisotopes in drinking water by alpha-particle spectroscopy. Applied Radiation and Isotopes, 67: 770-775.
  • 5. Beyer, M., Morgenstern, U. & Jackson, B., 2014. Review of techniques for dating young groundwater (<100 years) in New Zealand. Journal of Hydrology (New Zealand), 53: 93-111.
  • 6. Bieroński, J., Stefaniak, K., Hercman, H., Socha, P. & Nadachowski, A., 2009. Palaeogeographic and palaeoecological analysis of sediments of the Niedźwiedzia Cave in Kletno. In: Stefaniak, K., Tyc, A. & Socha, P. (eds), Karst of the Częstochowa Upland and of the Eastern Sudetes. Faculty of Earth Sciences University of Silesia. Sosnowiec, pp. 401-422.
  • 7. Blanchard, R. L., 1966. Rapid determination of lead-210 and polonium-210 in environmental samples by deposition on nickel. Analytical Chemistry, 38: 189-192.
  • 8. Boryło, A. & Skwarzec, B., 2014. Activity disequilibrium between 234U and 238U isotopes in natural environment. Journal of Radioanalytical and Nuclear Chemistry, 300: 719-727.
  • 9. Bourdon, B., Turner, S., Henderson, G. M. & Lundstrom, C. C., 2003. Introduction to U-series Geochemistry. Reviews in Mineralogy and Geochemistry, 52: 1-21.
  • 10. Carlston, C. W., 1964. Use of tritium in hydrologic research - problems and limitations. Hydrological Sciences Journal, 9: 38-42.
  • 11. Carvalho, F., Fernandes, S., Fesenko, S., Holm, E., Howard, B., Martin, P., Phaneuf, M., Porcelli, D., Pröhl, G. & Twining, J., 2017. The environmental behaviour of polonium. IAEA Technical Reports Series, 484: 1-255.
  • 12. Chabaux, F., Bourdon, B. & Riotte, J., 2008. U-series geochemistry in weathering profiles, river waters and lakes. In: Krishnaswami, S. & Cochran J. K. (eds), U-Th series nuclides in aquatic systems. Radiactivity in the Environment, 13. Elsevier, Amsterdam, pp. 49-104.
  • 13. Chruściel, E., Jodłowski, P., Kalita, S. J., Pieczonka, J. & Piestrzyński, A., 1996. Effects of uranium mining on radioactive contamination in the Kletno region in Poland. Journal of Radioanalytical and Nuclear Chemistry, 212: 259-268.
  • 14. Ciężkowski, W., Buczyński, S., Rzonca, B., Marszałek, H., Wąsik, M. & Staśko, S., 2009. Groundwater of karst terrain in the Sudetes. In: Stefaniak, K., Tyc, A. & Socha, P., (eds), Karst of the Częstochowa Upland and of the Eastern Sudetes. Faculty of Earth Sciences University of Silesia, Sosnowiec, pp. 371-384.
  • 15. Cigna, A. A., 2005. Radon in caves. International Journal of Speleology, 34: 1-18.
  • 16. Don, J., Skácel, J. & Gotowała, R., 2003. The boundary zone of the East and West Sudetes on the 1:50 000 scale geological map of the Velké Vrbno, Staré Mésto and Śnieżnik Metamorphic Units. Geologia Sudetica, 35: 25-59.
  • 17. Ferrari, C. R., do Nascimento, H. D. F., Rodgher, S., Almeida, T., Bruschi, A. L., do Nascimento, M. R. L. & Bonifacio, R. L., 2017. Effects of the discharge of uranium mining effluents on the water quality of the reservoir: an integrative chemical and ecotoxicological assessment. Scientific Reports, 7: 13919.
  • 18. Field, M. S., 2007. Risks to cavers and cave workers from exposures to low-level ionizing a radiation from 222Rn decay in caves. Journal of Cave and Karst Studies, 69: 207-228.
  • 19. Flynn, W. W., 1968. The determination of low levels of polonium-210 in environmental materials. Analytica Chimica Acta, 43: 221-227.
  • 20. Ford, D. & Williams, P., 2007. Karst Hydrogeology and Geomorphology. John Wiley and Sons, Chichester, 562 pp.
  • 21. Gascoyne, M., 1992. Geochemistry of the actinides and their daughters. In: Ivanovich, M. & Harmon, R. S. (eds), Uranium Series Disequilibrium: Applications to Environmental Problems. 2nd ed. Clarendon Press, Oxford, pp. 34-61.
  • 22. Gąsiorowski, M., Hercman, H., Pruszczyńska, A. & Błaszczyk, M., 2015. Drip rate and tritium activity in the Niedźwiedzia Cave system (Poland) as a tool for tracking water circulation paths and time in karstic systems. Geochronometria, 42: 210-216.
  • 23. Goldscheider, N., Meiman, J., Pronk, M. & Smart C., 2008. Tracer tests in karst hydrogeology and speleology. International Journal of Speleology, 37: 27-40.
  • 24. Haczek, A., Kostka, S. & Markowski, M., 2014. Jaskinia Niedźwiedzia - partie odkryte po roku 2012. In: Stefaniak, K., Ratajczak, U. & Wróblewski, W. (eds), Materiały 48. Sympozjum Speleologicznego, Kletno, 16-19.10.2014. Sekcja Speleologiczna Polskiego Towarzystwa Przyrodników im. Kopernika, Kraków, pp. 44-50. [In Polish.]
  • 25. Ham, G. J., Ewers, L. W. & Clayton, R. F., 1997. Improvements on lead-210 and polonium-210 determination in environmental materials. Journal of Radioanalytical and Nuclear Chemistry, 226: 61-65.
  • 26. Hercman, H., Lauritzen, S.-E. & Głazek, J., 1995. Uranium-series dating of speleothems from Niedźwiedzia and Radochowska Caves, Sudetes, (Poland). Theoretical and Applied Karstology, 8: 37-48.
  • 27. Horwitz, E. P., Chirizia, R., Dietz, M. L. & Diamond, H., 1993. Separation and preconcentration of actinides from acidic media by extraction chromatography. Analytica Chimica Acta, 281: 361-372.
  • 28. Ivanovich, M. & Harmon, R. S., 1992. Uranium Series Disequilibrium. Applications to Environmental Problems. Clarendon, Oxford, 571 pp.
  • 29. Lechleitner, F. A., Fohlmeister, J., McIntyre, C., Baldini, L. M., Jamieson, R. A., Hercman, H., Gąsiorowski, M., Pawlak, J., Stefaniak, K., Socha, P., Eglinton, T. I. & Baldini, J. U. L., 2016. A novel approach for construction of radiocarbon-based chronologies for speleothems. Quaternary Geochronology, 35: 54-66.
  • 30. Markich, S. J., 2002. Uranium speciation and bioavailability in aquatic systems: an overview. The Scientific World Journal, 2: 707-729.
  • 31. Martin, A. & Blanchard, R. L., 1969. The thermal volatilisation of caesium137, polonium-210 and lead-210 from in vivo labelled samples. Analyst, 94: 441-446.
  • 32. Matthews, K. M., Kim, C.-K. & Martin, P. 2007. Determination of 210Po in environmental materials: A review of analytical methodology. Applied Radiation and Isotopes, 65: 267-279.
  • 33. Narita, H., Harada, K. & Burnett, W. C., 1989. Determination of 210Pb, 210Bi and 210Po in natural water and other materials by electrochemical separation. Talanta, 36: 925-929.
  • 34. Petit, J.-C., Langevin, Y. & Dran, J-C., 1985. 234U/238U disequilibrium in nature: theoretical reassessment of the various proposed models. Bulletin de Minéralogie, 108: 745-753.
  • 35. Przylibski, T. A. & Piasecki, J., 1998. Radon as a natural radioactive tracer of permanent air movements in the Niedźwiedzia Cave (Śnieżnik Kłodzki, Sudety Mts.). Kras i Speleologia, 9: 179-193.
  • 36. Seiler, R., 2016. 210Po in drinking water, its potential health effects, and inadequacy of the gross alpha activity MCL. Science of the Total Environment, 568: 1010-1017.
  • 37. Sekudewicz, I. & Gąsiorowski, M., 2019. Determination of the activity and the average annual dose of absorbed uranium and polonium in drinking water from Warsaw. Journal of Radioanalytical and Nuclear Chemistry, 319: 1351-1358.
  • 38. Simon, K. S., Pipan, T. & Culver, D. C., 2013. Spatial and temporal heterogeneity in the flux of organic carbon in caves. In: Ribeiro, L., Stigter, T. Y., Chambel, A., de Melo, M. T. C., Monteiro, J. P. & Medeiros, A. (eds), Groundwater and Ecosystems. Taylor & Francis, London, pp. 47-56.
  • 39. Skwarzec, B., Strumińska, D. I. & Boryło, A., 2001. The radionuclides 234U, 238U and 210Po in drinking water in Gdańsk agglomeration (Poland). Journal of Radioanalytical and Nuclear Chemistry, 250: 315-318.
  • 40. Sobień, K. & Nawrocki, J., 2010. Palaeomagnetic and petromagnetic study of uranium-bearing polymetallic-fluorite mineralization in the Orlík-Kladsko crystalline complex (near Kletno, Lower Silesia, Poland). Geological Quarterly, 54: 325-336.
  • 41. Solomon, D. K. & Cook, P. G., 2000. 3H and 3He. In: Cook, P. G. & Herczeg, A. L. (eds), Environmental Tracers in Subsurface Hydrology. Springer, Boston, pp. 397-424.
  • 42. Vaaramaa, K., Lehto, J. & Ervanne, H., 2003. Soluble and particle-bound 234,238U, 226Ra and 210Po in ground waters. Radiochimica Acta, 91: 21-27.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-708740fb-159e-436d-b887-43b4c312f5f0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.