PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study on Low-Velocity Impact Behavior of Twaron® Fabric Subjected to Double-Impactor Impact from a Numerical Analysis Perspective

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the present study, a finite element impact model was developed and analyzed using commercial FEM code ANSYS® and then validated via a drop-weight impact experiment. Moreover, double-impactor impact models were designed and developed with different impact distribution and locations of two impactors to compare impact properties. A total of 18 impact scenarios comprised of asymmetric and symmetric types were performed. The effect of impact location on the impact resistance force and duration time was investigated: the closer the impact point is to the fabric center, the longer the impact duration time. In addition, the effect of impact location on impactor failure deflection was also investigated and it was concluded that regardless of the symmetric or asymmetric impact scenario, the smaller the average distance between the impact location of the two impactors from the fixed boundary, the smaller the overall average failure deflection that occurs. The relevance of impact location and fabric energy absorption capacity was also identified. Furthermore, the effect of impact location on fabric stress distribution and transverse deformation and of the variation of the impact velocity on fabric impact behaviors were investigated. These findings will provide important guidance for engineering soft body armor and composite materials.
Rocznik
Strony
38--51
Opis fizyczny
Bibliogr. 33 poz., rys., tab.
Twórcy
autor
  • College of Textiles and Apparel, Quanzhou Normal University, Quanzhou 362000, China
autor
  • College of Textiles and Apparel, Quanzhou Normal University, Quanzhou 362000, China
autor
  • College of Textiles and Apparel, Quanzhou Normal University, Quanzhou 362000, China
autor
  • Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda 386-8567, Japan
Bibliografia
  • 1. Nilakantan, Gaurav, and Steven Nutt. Effects of ply orientation and material on the ballistic impact behavior of multilayer plain-weave aramid fabric targets. Defence technology 14.3 (2018): 165-178.
  • 2. Yang, Cheng-Chou, Tuan Ngo, and Phuong Tran. Influences of weaving architectures on the impact resistance of multi-layer fabrics. Materials & Design 85 (2015): 282-295.
  • 3. Nipanjan Nayak, Chandra Sekher, Yerramalli, AsimTewari. Experimental investigation of the impact resistance on KEVLAR XP S308® fabric impacted with truncated ogive projectile subjected to pre-tension. Int J Impact Eng 2022,163, 104165.
  • 4. Hongxu Wang, DakshithaWeerasinghe, DamithMohotti, Paul J.Hazell, V.P.W.Shim, KrishnaShankar, Evgeny V. Morozov. On the impact response of UHMWPE woven fabrics: Experiments and simulations. International Journal of Mechanical Sciences. 2021,204, 106574.
  • 5. Yanfei Yang, Yanchen Liu, Sainan Xue, Xiangling Sun. Multi-scale finite element modeling of ballistic impact onto woven fabric involving fiber bundles. Composite Structures,2021,267, 113856.
  • 6. Haolei Mou, Jiang Xie, Hui Pei, Zhenyu Feng, Hongzhang Geng. Ballistic Impact tests and stacked shell simulation analysis of aramid fabric containment system. Aerospace Science and Technology. 2020, 107, 106344.
  • 7. Xu, Wanli, Zhijia Dong, and Pibo Ma. Finite element analyses of auxetic warpknitted fabric deformation behaviors under low-velocity impact loading. The Journal of The Textile Institute 111.11 (2020): 1578-1586.
  • 8. Zeng, Haoxian, Xiaogang Chen, and Yanfei Yang. Influences of Combined Section in Three-dimensional Networked Fabric against Ballistic Impact. Applied Composite Materials (2021): 1-15.
  • 9. Palta Emre, Fang Howie. On a multiscale finite element model for evaluating ballistic performance of multi-ply woven fabrics. Composite Structures 2019; 207:488–580.
  • 10. Giannaros, E, Kotzakolios, A., Sotiriadis, G., Tsantzalis, S, & Kostopoulos, V. On fabric materials response subjected to ballistic impact using meso-scale modeling. Numerical simulation and experimental validation. Composite Structures, 204(2018), 745-754.
  • 11. Yang, Yanfei, and Xiaogang Chen. Influence of fabric architecture on energy absorption efficiency of soft armour panel under ballistic impact. Composite Structures 224 (2019): 111015.
  • 12. Chu, Y, Rahman, M. R, Min, S., & Chen, X. Experimental and numerical study of inter-yarn friction affecting mechanism on ballistic performance of Twaron® fabric. Mechanics of Materials, 148(2020), 103421.
  • 13. Miao, H., Wu, Z., Ying, Z., & Hu, X.. The numerical and experimental investigation on low-velocity Impact response of composite panels: Effect of fabric architecture. Composite Structures, 227(2019), 111343.
  • 14. Yadav, K., Upadhyay, A. K., & Shukla, K. K. Effect of obliquity on ballistic impact response of plain-woven fabric. International Journal of Materials and Structural Integrity, (2019)13(1-3), 93-109.
  • 15. Feito, N., Loya, J. A., Muñoz-Sánchez, A., & Das, R. Numerical modelling of ballistic impact response at low velocity in aramid fabrics. Materials, (2019)12(13), 2087.
  • 16. Palta, Emre, and Howie Fang. On a multiscale finite element model for evaluating ballistic performance of multi-ply woven fabrics.Composite Structures 207 (2019): 488-508.
  • 17. Grujicic M, Hariharan a, Pandurangan B, Yen CF, Cheeseman Ba, Wang Y, Zheng JQ. Fiber-level modeling of dynamic strength of kevlar® KM2 ballistic fabric. J Mater Eng Perform 2012;21(7):1107–19.
  • 18. Zhang, Y, Ju, J. W, Zhu, H, Guo, Q, & Yan, Z. Micromechanics based multilevel model for predicting the coefficients of thermal expansion of hybrid fiber reinforced concrete. Construction and Building Materials, 190(2018), 948-963.
  • 19. Ivanov I, Tabiei A. Loosely woven fabric model with viscoelastic crimped fibers for ballistic impact simulations. Int J Numer Meth Eng 2004;61(10):1565–83.
  • 20. Shahkarami a, Vaziri R. A continuum shell finite element model for Impact simulation of woven fabrics. Int J Impact Eng 2007;34(1):104–19.
  • 21. Fang H, Gutowski M, Disogra M, Wang Q. A numerical and experimental study of woven fabric material under ballistic impacts. Adv Eng Softw (2016), 96:14–28.
  • 22. Liu, L, Yang, Z., Liu, X, Chen, W, Zhao, Z, & Luo, G. Yarn dynamic tensile behawior and meso-scale numerical simulation method for STF-Kevlar fabrics. Thin-Walled Structures, 159 (2021), 107319.
  • 23. Zeng, H., Chen, X., & Yang, Y.. Influences of Combined Section in Threedimensional Networked Fabric against Ballistic Impact. Applied Composite Materials, (2021)1-15.
  • 24. Giannaros, E., Kotzakolios, A., Sotiriadis, G., Tsantzalis, S., & Kostopoulos, V. On fabric materials response subjected to ballistic impact using meso-scale modeling. Numerical simulation and experimental validation. Composite Structures, 204, (2018) 745-754.
  • 25. Priyanka, P, Mali, H. S, & Dixit, A. Mesoscale numerical characterization of Kevlar and carbon–Kevlar hybrid plainwoven fabric compression behavior. Journal of Materials Engineering and Performance, (2019)28(9), 5749-5762.
  • 26. Feito, N., Loya, J. A., Muñoz-Sánchez, A., & Das, R. Numerical modelling of ballistic impact response at low velocity in aramid fabrics. Materials, (2019)12(13), 2087.
  • 27. Canyi Huang, Lina Cui, Hong Xia, Yiping Qiu, Qing-Qing Ni. A numerical study on the influence of hole defects on Impact behavior of Twaron® fabric subjected to low-velocity impacts. Journal of Engineered Fibers and Fabrics, 2021,16: 1–18.
  • 28. Wang, H, Weerasinghe, D, Mohotti, D, Hazell, P. J, Shim, V. P. W, Shankar, K., & Morozov, E. V. On the Impact Response of UHMWPE Woven Fabrics: Experiments and Simulations. International Journal of Mechanical Sciences, (2021)106574.
  • 29. Canyi Huang, Lina Cui, Yajun Liu, Hong Xia, Yiping Qiu, Qing-Qing Ni. Lowvelocity drop weight impact behawior of Twaron® fabric investigated using experimental and numerical simulations. Int J Impact Eng, (2021)149, 103796.
  • 30. Canyi Huang, Lina Cui, Hong Xia, Yiping Qiu, Qing-Qing Ni. A numerical study on the low-velocity impact behavior of the Twaron® fabric subjected to oblique impact. Reviews on Advanced Materials Science, 2021,60:980-994.
  • 31. Hairong Miao, Zhenyu Wu, Zhiping Ying, Xudong Hu. The numerical and experimental investigation on lowvelocity impact response of composite panels: Effect of fabric architecture. Composite Structures 227 (2019) 111343.
  • 32. Canyi Huang, Lina Cui, Hong Xia, Yiping Qiu, Qing-Qing Ni. Influence of crimp and inter-yarn friction on the mechanical properties of woven fabric under uniaxial/biaxial tensile loading. FIBRES & TEXTILES in Eastern Europe, 2020(28): 43-52.
  • 33. Yanfei Yang, Xiaogang Chen. Investigation on energy absorption efficiency of each layer in ballistic amour panel for applications in hybrid design. Composite Structure, 164 (2017), pp. 1-9.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-70852f94-2970-4b69-ac6d-326ebb973a24
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.