PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Rotorcraft thickness noise control

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper describes an innovative idea of Thickness Noise Control (TNC) based on adoption of a flow control strategy (i.e. surface ventilation) for acoustic attenuation of helicopter rotor periodic noise. The TNC method is relying on incorporation of multiple cavities (closed by perforated panels and linked to low- and high-pressure reservoirs) located in a symmetrical manner at front and rear portions of the blade tip. The efficiency of the new approach is verified using a two-bladed model rotor of Purcell (untwisted variant of the blade of Bell UH-1H Iroquois helicopter) in low-thrust hover conditions. The results of numerical simulations, obtained with CFD solver (Spalart–Allmaras turbulence and Bohning–Doerffer transpiration models), indicate that in the near-field of the blade tip, both the amplitude and spectral contents of pressure impulses of emitted thickness noise are significantly improved. The TNC method, in the proposed unsteady mode of operation, turns out to be a suitable means of thickness noise reduction in forward flight. Moreover, it is demonstrated that by proper azimuthal activation the efficiency is almost unaltered, while the rotor torque penalty and required transpiration mass-flux are decreased by a factor of 3–5 compared to a steady arrangement.
Rocznik
Strony
391--417
Opis fizyczny
Bibliogr. 33 poz., rys., wykr.
Twórcy
autor
  • Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-231 Gdansk, Poland
Bibliografia
  • 1. F.H. Schmitz, The challenges and possibilities of a truly quiet helicopter, Journal of the American Helicopter Society, 61, 4, 041001, 1–33, 2016.
  • 2. F. Farassat, Derivation of formulations 1 and 1A of Farassat, NASA Langley Technical Memorandum, TM-2007-214853, 1–20, 2007.
  • 3. J.E. Ffowcs Williams, D.L. Hawkings, Sound generation by turbulence and surfa ces in arbitrary motion, Philosophical Transactions of the Royal Society of London, 264, 1151, 321–342, 1969.
  • 4. F.H. Schmitz, Rotor noise, Aeroacoustics of Flight Vehicles: Theory and Practice; Volume 1: Noise Sources, H.H. Hubbard [ed.], NASA Langley Reference Publication 1258, United States, 65–149, 1991.
  • 5. K.S. Brentner, F. Farassat, Modeling aerodynamically generated sound of helikopter rotors, Progress in Aerospace Sciences, 39, 2–3, 83–120, 2003.
  • 6. W.R. Splettstoesser, B. van der Wall, B. Junker, K.J. Schultz, P. Beaumier, Y. Delrieux, P. Leconte, P. Crozier, The ERATO programme: wind tunnel test results and proof of design for an aeroacoustically optimised rotor, Proceedings of the 25th European Rotorcraft Forum, Rome, B7, 1–15, 1999.
  • 7. M. Mosher, Acoustic measurements of a full-scale rotor with four tip shapes, Vol. 1, NASA Ames Technical Memorandum, NASA-TM-85878-VOL-1, 1–89, 1984.
  • 8. M. Mosher, Acoustic measurements of a full-scale rotor with four tip shapes, Vol. 2, NASA Ames Technical Memorandum, NASA-TM-85878-VOL-2, 1–348, 1984.
  • 9. F.H. Schmitz, D.A. Boxwell, R. Vause, Acoustically swept rotor, United States Patent, 4168939, 1–23, 1979.
  • 10. B. Edwards, Psychoacoustic testing of modulated blade spacing for main rotors, NASA Langley Contractor Report, NASA/CR-2002-211651, 1–50, 2002.
  • 11. B. Hagerty, S. Kottapalli, Boeing SMART rotor full-scale wind tunnel test data report, NASA Ames Technical Memorandum, NASA/TM-2012-216048, 1–20, 2012.
  • 12. B.W. Sim, R.D. Janakiram, B.H. Lau, Reduced in-plane, low-frequency noise of an active flap rotor, Journal of the American Helicopter Society, 59, 2, 022002, 1–17, 2014.
  • 13. T.R. Norman, C. Theodore, P. Shinoda, D. Fuerst, U.T.P. Arnold, S. Makinen, P. Lorber, J. O’Neill, Full-scale wind tunnel test of a UH-60 individual blade control system for performance improvement and vibration, loads, and noise control, Proceedings of the American Helicopter Society 65th Annual Forum, Grapevine, 1–20, 2009.
  • 14. Ch. Kessler, Active rotor control for helicopters: motivation and survey on higher harmonic control, CEAS Aeronautical Journal, 1, 3, 3–22, 2011.
  • 15. E.R. Booth, M.L. Wilbur, Acoustic aspects of active-twist rotor control, Journal of the American Helicopter Society, 49, 1, 3–10, 2004.
  • 16. C.D. Sargent, F.H. Schmitz, Fundamental experimental studies supporting on-blade tip air blowing control of in-plane rotor harmonic noise, Proceedings of the AIAA 33rd Aeroacoustics Conference, Colorado Springs, 2012-2140, 1–20, 2012.
  • 17. Y. Shi, T. Li, X. He, L. Dong, G. Xu, Helicopter rotor thickness noise control Rusing unsteady force excitation, Applied Sciences, 9, 7, 1351, 1–17, 2019.
  • 18. O. Szulc, P. Doerffer, Numerical study of potential application of active suction and blowing through blade tip perforation to reduction of helicopter rotor thickness noise, Journal of Physics: Conference Series, 1101, 012042, 1–6, 2018.
  • 19. P.P. Doerffer, R. Bohning, Modelling of perforated plate aerodynamics performance, Aerospace Science and Technology, 4, 8, 525–534, 2000.
  • 20. S. Platzer, J. Rauleder, M. Hajek, J. Milluzzo, Experimental and computational investigation on rotor blades with spanwise blowing, Proceedings of the 42nd European Rotorcraft Forum, Lille, 1–15, 2016.
  • 21. T. Young, B. Mahony, B. Humphreys, E. Totland, A. McClafferty, J. Corish, Durability of hybrid laminar flow control (HLFC) surfaces, Aerospace Science and Technology, 7, 181–190, 2003.
  • 22. F. Magagnato, KAPPA – Karlsruhe parallel program for aerodynamics, TASK Quarterly, 2, 2, 215–270, 1998.
  • 23. P.R. Spalart, S.R. Allmaras, A one-equation turbulence model for aerodynamic flows, Proceedings of the AIAA 30th Aerospace Sciences Meeting and Exhibit, Reno, 92-0439, 1–22, 1992.
  • 24. P. Doerffer, O. Szulc, Shock wave smearing by wall perforation, Archives of Mechanics, 58, 6, 543–573, 2006.
  • 25. P. Doerffer, O. Szulc, Application of the passive control of shock wave to the reduction of high-speed impulsive noise, International Journal of Engineering Systems Modelling and Simulation, 3, 1–2, 64–73, 2011.
  • 26. O. Szulc, P. Doerffer, P. Flaszynski, T. Suresh, Numerical modelling of shock wave-boundary layer interaction control by passive wall ventilation, Computers & Fluids, 200, 104435, 1–21, 2020.
  • 27. O. Szulc, P. Doerffer, F. Tejero, Passive control of rotorcraft high-speed impulsie noise, Journal of Physics: Conference Series, 760, 012031, 1–9, 2016.
  • 28. P. Doerffer, O. Szulc, Numerical simulation of model helicopter rotor in hover, TASK Quarterly, 12, 3, 227–236, 2008.
  • 29. O. Szulc, Passive control of shock wave-boundary layer interaction, PhD Dissertation, Institute of Fluid-Flow Machinery, Poland, 1–248, 2019, DOI:10.13140/RG.2.2.29478.06721 [in Polish].
  • 30. P. Doerffer, O. Szulc, Aerodynamic and aero-acoustic analysis of helicopter rotor blades in hover, eScience on Distributed Computing Infrastructure; Achievements of PLGrid Plus Domain-Specific Services and Tools, M. Bubak, J. Kitowski, K. Wiatr [eds.], Springer, Switzerland, 429–444, 2014.
  • 31. T.W. Purcell, CFD and transonic helicopter sound, Proceedings of the 14th European Rotorcraft Forum, Milano, 2, 1–17, 1988.
  • 32. A. Karpatne, J. Sirohi, B.Y. Min, D. Shannon, Experimental and numerical study of internal flow through a rotating duct, Journal of the American Helicopter Society, 62, 032010, 1–12, 2017.
  • 33. T. Suresh, O. Szulc, P. Flaszynski, P. Doerffer, Prediction of helicopter rotor noise in hover using FW-H analogy, Journal of Physics: Conference Series, 1101, 012041, 1–8, 2018.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7083178d-84ac-4ce0-b6a9-d1773b4a17ad
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.