Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Biobased hydrogels are three-dimensional polymeric matrices with a unique high water-holding capacity, which are mainly obtained from polysaccharides and proteins. Such a variety of natural polymer structures offers a range of hydrogel products with interesting physicochemical and biological properties. Nowadays, these matrices are already used in many industrial and environmental fields, which is considered extremely important. Moreover, the literature on the subject is constantly expanding, especially in areas of scientific research. The main purpose of this article is to briefly review the current development of matrices composition and properties of hydrogels of natural origin, considered as functional platforms in three application areas, primarily in biocatalysis, nutrition and medicine. The description of individual issues in the present article is supported by examples of case studies described in our previously published research papers, as well as considered in current projects of our research group.
Rocznik
Tom
Strony
art. no. e49
Opis fizyczny
Bibliogr. 61 poz., rys., tab.
Twórcy
autor
- Wrocław University of Science and Technology, Faculty of Chemistry, Department of Micro, Nano and Bioprocess Engineering, Norwida 4/6 50-373 Wrocław, Poland
autor
- Wrocław University of Science and Technology, Faculty of Chemistry, Department of Micro, Nano and Bioprocess Engineering, Norwida 4/6 50-373 Wrocław, Poland
autor
- Wrocław University of Science and Technology, Faculty of Chemistry, Department of Micro, Nano and Bioprocess Engineering, Norwida 4/6 50-373 Wrocław, Poland
autor
- Wrocław University of Science and Technology, Faculty of Chemistry, Department of Micro, Nano and Bioprocess Engineering, Norwida 4/6 50-373 Wrocław, Poland
Bibliografia
- 1. Ahmed E.M., 2015. Hydrogel: preparation, characterization, and applications: A review. J. Adv. Res., 6, 105–121. DOI: 10.1016/j.jare.2013.07.006.
- 2. Ali A., Ahmed S., 2018. Recent advances in edible polymer based hydrogels as a sustainable alternative to conventional polmers. J. Agric. Food Chem., 66, 6940–6967. DOI: 10.1021/acs.jafc.8b01052.
- 3. Arakawa K., 1962. Rheological properties of thermo-reversible gels. Bull. Chem. Soc. Jpn., 35, 309–312. DOI: 10.1246/bcsj.35.309.
- 4. Aswathy S.H., Narendrakumar U., Manjubala I., 2020. Commercial hydrogels for biomedical applications. Heliyon, 6, e03719. DOI: 10.1016/j.heliyon.2020.e03719.
- 5. Batista R.A., Espitia P.J.P., Quintans J.S.S., Freitas M.M., Cerqueira M.Â., Teixeira J.A., Cardoso J.C., 2019. Hydrogel as an alternative structure for food packaging systems. Carbohydr. Polym., 205, 106–116. DOI: 10.1016/j.carbpol.2018.10.006.
- 6. Bercea M., 2022. Bioinspired hydrogels as platforms for lifescience applications: challenges and opportunities. Polymers, 14, 2365. DOI: 10.3390/polym14122365.
- 7. Bilal M., Iqbal H.M.N., 2019. Naturally-derived biopolymers: potential platforms for enzyme immobilization. Int. J. Biol. Macromol., 130, 462–482. DOI: 10.1016/j.ijbiomac.2019. 02.152.
- 8. Binaymotlagh R., Chronopoulou L., Haghighi F.H., Fratoddi I., Palocci C., 2022. Peptide-based hydrogels: new materials for biosensing and biomedical applications. Materials, 15, 5871. DOI: 10.3390/ma15175871.
- 9. Caló E., Khutoryanskiy V.V., 2015. Biomedical applications of hydrogels: a review of patents and commercial products. Eur. Polym. J., 65, 252–267. DOI: 10.1016/j.eurpolymj.2014.11.024.
- 10. Cao H., Duan L., Zhang Y., Cao J., Zhang K., 2021. Current hydrogel advances in physicochemical and biological response-driven biomedical application diversity. Signal Transduction Targeted Ther., 6, 426. DOI: 10.1038/s41392-021-00830-x.
- 11. Chamkouri H., Chamkouri M., 2021. A review of hydrogels, their properties and applications in medicine. Am. J. Biomed. Sci. Res., 11, 485–493. DOI: 10.34297/AJBSR.2021.11.001682.
- 12. Chen H., Cheng J., Ran L., Yu K., Lu B., Lan G., Dai F., Lu F., 2018. An injectable self-healing hydrogel with adhesive and antibacterial properties effectively promotes wound healing. Carbohydr. Polym., 201, 522–531. DOI: 10.1016/j.carbpol. 2018.08.090.
- 13. Cowsar D.R., Tarwater O.R., Tanquary A.C., 1976. Controlled release of fluoride from hydrogels for dental applications, In: Andrade J.D. (Eds.), Hydrogels for medical and related applications. American Chemical Society, Washington, 180–197.
- 14. Dhivya S., Padma V.V., Santhini E., 2015. Wound dressings – a review. BioMedicine, 5, 22. DOI: 10.7603/s40681-015-0022-9.
- 15. Enawgaw H., Tesfaye T., Yilma K.T., Limeneh D.Y., 2021. Synthesis of a cellulose-co-AMPS hydrogel for personal hygiene applications using cellulose extracted from corncobs. Gels, 7, 236. DOI: 10.3390/gels7040236.
- 16. Foote H.W., Saxton B., 1916. The effect of freezing on certain inorganic hydrogels. J. Am. Chem. Soc., 38, 588–609. DOI: 10.1021/ja02260a007.
- 17. Fu K., Fu S., Zhan H., Zhou P., Liu M., Liu H., 2013. A newly isolated wood-rot fungus for laccase production in submerged cultures. BioRes., 8, 1385–1397. DOI: 10.15376/biores.8.1.1385-1397.
- 18. Gao L., Zhou Y., Peng J., Xu C., Xu Q., Xing M., Chang J., 2019. A novel dual-adhesive and bioactive hydrogel activated by bioglass for wound healing. NPG Asia Mater., 11, 66. DOI: 10.1038/s41427-019-0168-0.
- 19. Gilding D.K., Green G.F., Annis D., Wilson J.G., 1978. Soft tissue ingrowth into hydrogels. Trans. Am. Soc. Artif. Intern. Organs, 24, 411–414.
- 20. Gunda N.S.K., Chavali R., Mitra S.K., 2016. A hydrogel based rapid test method for detection of Escherichia coli (E. coli) in contaminated water samples. Analyst, 141, 2920–2929. DOI: 10.1039/c6an00400h.
- 21. Haque M.O., Mondal M.I.H., 2018. Cellulose-based hydrogel for personal hygiene applications, In: Mondal M.I.H (Eds.), Cellulose-based superabsorbent hydrogels. Springer International Publishing, 1-21.
- 22. Hurd C.B., Merz P.L., 1946. Studies on silicic acid gels. XIV. Dialysis of silica hydrosol and hydrogel. J. Am. Chem. Soc., 68, 61–64. DOI: 10.1021/ja01205a019.
- 23. Imam H.T., Marr P.C., Marr A.C., 2021. Enzyme entrapment, biocatalyst immobilization without covalent attachment. Green Chem., 23, 4980–5005. DOI: 10.1039/D1GC01852C.
- 24. Kaczmarek B., Nadolna K., Owczarek A., 2020. The physical and chemical properties of hydrogels based on natural polymers, In: Chen Y. (Eds.), Hydrogels based on natural polymers. Elsevier Amsterdam, 151–172.
- 25. Kapusta O., Jarosz A., Stadnik K., Giannakoudakis D.A., Barczyński B., Barczak M., 2023. Antimicrobial natural hydrogels in biomedicine: properties, applications, and challenges – A concise review. Int. J. Mol. Sci., 24, 2191. DOI: 10.3390/ijms24032191.
- 26. Kiiskinen L.-L., Rättö M., Kruus K., 2004. Screening for novel laccase-producing microbes. J. Appl. Microbiol., 97, 640–646. DOI: 10.1111/j.1365-2672.2004.02348.x.
- 27. Klein M., Poverenov E.. 2020. Natural biopolymer-based hydrogels for use in food and agriculture. J. Sci. Food Agric., 100, 2337–2347. DOI: 10.1002/jsfa.10274.
- 28. Labus K., 2018. Effective detection of biocatalysts with specified activity by using a hydrogel-based colourimetric assay – ˛-galactosidase case study. PloS ONE, 13, e0205532. DOI: 10.1371/journal.pone.0205532.
- 29. Labus K., Maniak H., 2023. Colourimetric plate assays based on functionalized gelatine hydrogel useful for various screening purposes in enzymology. Int. J. Mol. Sci., 24, 33. DOI: 10.3390/ijms24010033.
- 30. Labus K., Wolanin K., Radosiński Ł., 2020. Comparative study on enzyme immobilization using natural hydrogel matrices – experimental studies supported by molecular models analysis. Catalysts, 10, 489. DOI: 10.3390/catal10050489.
- 31. Li J., Mooney D.J., 2016. Designing hydrogels for controlled drug delivery. Nat. Rev. Mater., 1, 16071. DOI: 10.1038/natrevmats.2016.71.
- 32. Lv Y., Lv W., Li G., Zhong Y., 2023. The research progress ofphysical regulation techniques in 3D food printing. Trends Food Sci. Technol., 133, 231–243. DOI: 10.1016/j.tifs.2023.02.004.
- 33. Madhavikutty A.S., Singh Chandel A.K., Tsai C.C., Inagaki N.F., Ohta S., Ito T., 2023. pH responsive cationic guar gum-borate self-healing hydrogels for muco-adhesion. Sci. Technol. Adv. Mater., 24, 2175586. DOI: 10.1080/14686996.2023.2175586.
- 34. Manzoor A., Dar A.H., Pandey V.K., Shams R., Khan S., Panesar P.S., Kennedy J.F., Fayaz U., Khan S.A., 2022. Recent insights into polysaccharide-based hydrogels and their potential applications in food sector: a review. Int. J. Biol. Macromol., 213, 987–1006. DOI: 10.1016/j.ijbiomac.2022.06.044.
- 35. Maroufi L.Y., Rashidi M., Tabibiazar M., Mohammadi M., Pezeshki A., Ghorbani M., 2022. Recent advances of macro-molecular hydrogels for enzyme immobilization in the food products. Adv. Pharm. Bull., 12, 309–318. DOI: 10.34172/apb.2022.043.
- 36. Merino S., Martín C., Kostarelos K., Prato M., Vázquez E., 2015. Nanocomposite hydrogels: 3D polymer – nanoparticle synergies for on-demand drug delivery. ACS Nano, 9, 4686–4697. DOI: 10.1021/acsnano.5b01433.
- 37. Nagamine K., Mano T., Nomura A., Ichimura Y., Izawa R., Furusawa H., Matsui H., Kumaki D., Tokito S., 2019. Noninvasive sweat-lactate biosensor emplsoying a hydrogel-based touch pad. Sci. Rep., 9, 10102. DOI: 10.1038/s41598-019-46611-z.
- 38. Naidu R., Biswas B., Willett I.R., Cribb J., Singh B.K., Nathanail C.P., Coulon F., Semple K.T., Jones K.C., Barclay A., Aitken R.J., 2021. Chemical pollution: A growing peril and potential catastrophic risk to humanity. Environ. Int., 156, 106616. DOI: 10.1016/j.envint.2021.106616.
- 39. Nikoshvili L.Z., Tikhonov B.B., Ivanov P.E., Stadolnikova P.Y., Sulman M.G., Matveeva V.G., 2023. Recent progress in chitosan-containing composite materials for sustainable ap- proaches to adsorption and catalysis. Catalysts, 13, 367. DOI: 10.3390/catal13020367.
- 40. Pandey A., 2021. Food wastage: causes, impacts and solutions. Sci. Herit. J., 5, 17–20. DOI: 10.26480/gws.01.2021.17.20.
- 41. Park S., Park K.M., 2016. Engineered polymeric hydrogels for 3D tissue models. Polymers, 8, 23. DOI: 10.3390/polym8010023.
- 42. Peppas N.A., Merrill E.W., 1977. Development of semicrystalline poly(vinyl alcohol) hydrogels for biomedical applications. J. Biomed. Mater. Res., 11, 423–434. DOI: 10.1002/jbm.820110309.
- 43. Piluso S., Hiebl B., Gorb S.N., Kovalev A., Lendlein A., Neff A.T., 2011. Hyaluronic acid-based hydrogels crosslinked by copper-catalyzed azide-alkyne cycloaddition with tailorable mechanical properties. Int. J. Artif. Organs, 34, 192–197. DOI: 10.5301/ijao.2011.6394.
- 44. Prado G.H., Prado I.M., 2021. 4.04 – Hydrogels based on natural polysaccharides and their applications, In: Barchi J.J. (Eds.), Comprehensive glycoscience. Second Edition, Elsevier, Oxford, 71–92.
- 45. Qureshi M.A.R., Arshad N., Rasool A., Islam A., Rizwan M., Haseeb M., Rasheed T., Bilal M., 2022. Chitosan and carrageenan-based biocompatible hydrogel platforms for cos- meceutical, drug delivery, and biomedical applications. Starch – Stärke, 2200052. DOI: 10.1002/star.202200052.
- 46. Razavi S.M., Behrouzian F., 2018. Chapter 3 – Biopolymers for fat-replaced food design, In: Grumezescu A.M., Holban A.M. (Eds.), Biopolymers for food Design: Handbook of food bioengineering. Academic Press, 65–94.
- 47. Refojo M.F., 1965. Permeation of water through some hydrogels. J. Appl. Polym. Sci., 9, 3417–3426. DOI: 10.1002/app.1965.070091019.
- 48. Roquero D.M., Katz E., 2022. “Smart” alginate hydrogels in biosensing, bioactuation and biocomputing: state-of-the-art and perspectives. Sens. Actuators Rep., 4, 100095. DOI: 10.1016/j.snr.2022.100095.
- 49. Salehipour M., Rezaei S., Yazdani M., Mogharabi-Manzari M., 2023. Recent advances in preparation of polymer hydrogel composites and their applications in enzyme immobilization. Polym. Bull., 80, 5861–5896. DOI: 10.1007/s00289-022-04370-4.
- 50. Sharma J., Joshi M., Bhatnagar A., Chaurasia A.K., Nigam S., 2022. Pharmaceutical residues: One of the significant problems in achieving ’clean water for all’ and its solution. Environ. Res., 215, 114219. DOI: 10.1016/j.envres.2022.114219.
- 51. Simon A., Feher F., 1931. Beiträge zur Kenntnis von Hydrogelen. Ueber Mangandioxydhydrate. Kolloid-Zeitschrift, 54, 49–58. DOI: 10.1007/BF01422255.
- 52. Sun G., Huang Z., Zhang Z., Liu Y., Li J., Du G., Lv X., Liu L., 2022. A two-step cross-linked hydrogel immobilization strategy for diacetylchitobiose deacetylase. Catalysts, 12, 932. DOI: 10.3390/catal12090932.
- 53. Tan Z., Bilal M., Raza A., Cui J., Ashraf S.S., Iqbal H.M.N., 2021. Expanding the biocatalytic scope of enzyme-loaded polymeric hydrogels. Gels, 7, 194. DOI: 10.3390/gels7040194.
- 54. Tavakoli J., Tang Y., 2017. Hydrogel based sensors for biomedical applications: an updated review. Polymers, 9, 364. DOI: 10.3390/polym9080364.
- 55. Tibbitt M.W., Anseth K.S., 2009. Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnol. Bioeng., 103, 655–663. DOI: 10.1002/bit.22361.
- 56. van Bemmelen J.M., 1902. Die Absorption. 7. Abhandlung: Die Einwirkung von höheren Temperaturen auf das Gewebe des Hydrogels der Kieselsäure. Z. Anorg. Chem., 30, 265–279. DOI: 10.1002/zaac.19020300114.
- 57. Wang Y., Zhang D., Zhang H., Shang L., Zhao Y., 2022. Responsive photonic alginate hydrogel particles for the quantitative detection of alkaline phosphatase. NPG Asia Mater., 14, 54. DOI: 10.1038/s41427-022-00401-8.
- 58. Watase M., Arakawa K., 1968. Rheological properties of hydrogels of agar-agar. III. Stress relaxation of agarose gels. Bull. Chem. Soc. Jpn., 41, 1830–1834. DOI: 10.1246/bcsj.41.1830.
- 59. Weschsler S., Wilson G., 1978. Changes in hydrogel contact lens power due to flexure. Optometry Vision Sci., 55, 78–83. DOI: 10.1097/00006324-197802000-00003.
- 60. Zha F., Rao J., Chen B., 2021. Plant-based food hydrogels: constitutive characteristics, formation, and modulation. Curr. Opin. Colloid Interface Sci., 56, 101505. DOI: 10.1016/j.cocis.2021.101505.
- 61. Zhang H., Zhang F., Yuan R., 2020. Chapter 13 – Applications of natural polymer-based hydrogels in the food industry, In: Chen Y. (Ed.), Hydrogels based on natural polymers. Elsevier, 357–410. DOI: 10.1016/B978-0-12-816421-1.00015-X.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-707fbe16-51de-4f79-908a-6a6afa0c2cca
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.