PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Sustainability assessment of different nanoparticle for heat exchanger applications: an intuitionistic fuzzy combinative distance-based assessment method

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The rate at which the conventional energy sources are depleting is a matter of concern, and there have been major attention on this to make the thermal systems environment friendly, efficient, economic, sustainable, technically reliable. Sustainability of five different types of nanoparticles (Ceramic, carbon based, metal based, polymeric, and lipid based) from the perspective of four aspects involving cost, efficiency, technicality and environmental effect, in heat exchangers has been assessed. The analysis is carried out using the intuitionistic fuzzy combative distance based assessment (IFCODAS) method. In order to measure the sustainability of nanoparticles, a set of eleven evaluating criteria have been accredited on the basis of expert opinions and focus group meetings. By amalgamating the intuitionistic fuzzy set (IFS) theory as well as the use of distance-based assessment (CODAS) method, the IFCODASIFCODAS method has permitted the decision-makers to rate the alternative five nanoparticles pertaining to each criterion. On the basis of the results obtained from IFCODAS method, it is observed that the carbon based nanoparticles have an immense potential to provide significantly reliable and sustainable thermal system than other nanoparticles.
Twórcy
autor
  • Faculty of Engineering and Technology, Shoolini University Solan, H.P, 173229, India
  • Faculty of Engineering and Technology, Shoolini University Solan, H.P, 173229, India
autor
  • Faculty of Engineering and Technology, Shoolini University Solan, H.P, 173229, India
  • Department of Mechanical Engineering, School of Engineering, University of Petroleum & Energy Studies Bidholi, Dehradun- 248007, Uttarakhand, India
autor
  • Department of Mechanical Engineering, School of Engineering, University of Petroleum & Energy Studies Bidholi, Dehradun- 248007, Uttarakhand, India
Bibliografia
  • [1] T.R. Kiran, S.P.S. Rajput, An effectiveness model for an indirect evaporative cooling (IEC) system: Comparison of artificial neural networks (ANN), adaptive neuro-fuzzy inference system (ANFIS) and fuzzy inference system (FIS) approach, Appl. Soft Comput. J. 11 (2011) 3525–3533. https://doi.org/10.1016/j.asoc.2011.01.025.
  • [2] O.A. Akbari, H.H. Afrouzi, A. Marzban, D. Toghraie, H. Malekzade, A. Arabpour, Investigation of volume fraction of nanoparticles effect and aspect ratio of the twisted tape in the tube, J. Therm. Anal. Calorim. 129 (2017) 1911–1922. https://doi.org/10.1007/s10973-017-6372-7.
  • [3] W.H. Azmi, K. V. Sharma, P.K. Sarma, R. Mamat, S. Anuar, Comparison of convective heat transfer coefficient and friction factor of TiO2 nanofluid flow in a tube with twisted tape inserts, Int. J. Therm. Sci. 81 (2014) 84–93. https://doi.org/10.1016/j.ijthermalsci.2014.03.002.
  • [4] S.S. Chougule, S.K. Sahu, Heat transfer and friction characteristics of Al2O3/water and CNT/water nanofluids in transition flow using helical screw tape inserts - a comparative study, Chem. Eng. Process. Process Intensif. 88 (2015) 78–88. https://doi.org/10.1016/j.cep.2014.12.005.
  • [5] S. Eiamsa-Ard, K. Wongcharee, Single-phase heat transfer of CuO/water nanofluids in micro-fin tube equipped with dual twisted-tapes, Int. Commun. Heat Mass Transf. 39 (2012) 1453–1459. https://doi.org/10.1016/j.icheatmasstransfer.2012.08.007.
  • [6] S. Eiamsa-Ard, K. Kiatkittipong, Heat transfer enhancement by multiple twisted tape inserts and TiO2/water nanofluid, Appl. Therm. Eng. 70 (2014) 896–924. https://doi.org/10.1016/j.applthermaleng.2014.05.062.
  • [7] R. Hosseinnezhad, O.A. Akbari, H. Hassanzadeh Afrouzi, M. Biglarian, A. Koveiti, D. Toghraie, Numerical study of turbulent nanofluid heat transfer in a tubular heat exchanger with twin twisted-tape inserts, J. Therm. Anal. Calorim. 132 (2018) 741–759. https://doi.org/10.1007/s10973-017-6900-5.
  • [8] M. Jafaryar, M. Sheikholeslami, Z. Li, CuO-water nanofluid flow and heat transfer in a heat exchanger tube with twisted tape turbulator, Powder Technol. 336 (2018) 131–143. https://doi.org/10.1016/j.powtec.2018.05.057.
  • [9] D. MageshBabu, P.K. Nagarajan, R. Sathyamurthy, S.S.J. Krishnan, Enhancing the thermal performance of AL2O3/DI water nanofluids in micro-fin tube equipped with straight and left-right twisted tapes in turbulent flow regime, Exp. Heat Transf. 30 (2017) 267–283. https://doi.org/10.1080/08916152.2016.1238857.
  • [10] H. Mohammadiun, M. Mohammadiun, M. Hazbehian, H. Maddah, Experimental study of ethylene glycol-based Al2O3 nanofluid turbulent heat transfer enhancement in the corrugated tube with twisted tapes, Heat Mass Transf. Und Stoffuebertragung. 52 (2016) 141–151. https://doi.org/10.1007/s00231-015-1550-2.
  • [11] M.T. Naik, G.R. Janardana, L.S. Sundar, Experimental investigation of heat transfer and friction factor with water-propylene glycol based CuO nanofluid in a tube with twisted tape inserts, Int. Commun. Heat Mass Transf. 46 (2013) 13–21. https://doi.org/10.1016/j.icheatmasstransfer.2013.05.007.
  • [12] N.T. Ravi Kumar, P. Bhramara, A. Kirubeil, L. Syam Sundar, M.K. Singh, A.C.M. Sousa, Effect of twisted tape inserts on heat transfer, friction factor of Fe3O4 nanofluids flow in a double pipe U-bend heat exchanger, Int. Commun. Heat Mass Transf. 95 (2018) 53–62. https://doi.org/10.1016/j.icheatmasstransfer.2018.03.020.
  • [13] J. Deng, M. Wang, J. Fang, X. Song, Z. Yang, Z. Yuan, Synthesis of Zn-doped TiO2 nano-particles using metal Ti and Zn as raw materials and application in quantum dot sensitized solar cells, J. Alloys Compd. 791 (2019) 371–379. https://doi.org/10.1016/j.jallcom.2019.03.306.
  • [14] X. Liu, J. Wang, Y.W. Huang, T. Kong, Algae (Raphidocelis) reduce combined toxicity of nano-TiO2 and lead on C. dubia, Sci. Total Environ. 686 (2019) 246–253. https://doi.org/10.1016/j.scitotenv.2019.06.033.
  • [15] S. Fukuzumi, Y. Yamada, Catalytic activity of metal-based nanoparticles for photocatalytic water oxidation and reduction, J. Mater. Chem. 22 (2012) 24284–24296. https://doi.org/10.1039/c2jm32926c.
  • [16] R. D’Amato, M. Falconieri, S. Gagliardi, E. Popovici, E. Serra, G. Terranova, E. Borsella, Synthesis of ceramic nanoparticles by laser pyrolysis: From research to applications, J. Anal. Appl. Pyrolysis. 104 (2013) 461–469. https://doi.org/10.1016/j.jaap.2013.05.026.
  • [17] D. Vollath, D.V. Szabó, J. Haußelt, Synthesis and properties of ceramic nanoparticles and nanocomposites, J. Eur. Ceram. Soc. 17 (1997) 1317–1324. https://doi.org/10.1016/s0955-2219(96)00224-5.
  • [18] K. Matsumoto, H. Matsuoka, Synthesis of core-crosslinked carbosilane block copolymer micelles and their thermal transformation to silicon-based ceramics nanoparticles, J. Polym. Sci. Part A Polym. Chem. 43 (2005) 3778–3787. https://doi.org/10.1002/pola.20879.
  • [19] J. Shen, L. Dudik, C.C. Liu, An iridium nanoparticles dispersed carbon based thick film electrochemical biosensor and its application for a single use, disposable glucose biosensor, Sensors Actuators, B Chem. 125 (2007) 106–113. https://doi.org/10.1016/j.snb.2007.01.043.
  • [20] J. Zhou, T. Zhu, W. Xing, Z. Li, H. Shen, S. Zhuo, Activated polyaniline-based carbon nanoparticles for high performance supercapacitors, Electrochim. Acta. 160 (2015) 152–159. https://doi.org/10.1016/j.electacta.2015.02.032.
  • [21] J.M. Ngoy, N. Wagner, L. Riboldi, O. Bolland, A CO2 capture technology using multi-walled carbon nanotubes with polyaspartamide surfactant, in: Energy Procedia, 2014: pp. 2230–2248. https://doi.org/10.1016/j.egypro.2014.11.242.
  • [22] Y. Zhang, D. Petibone, Y. Xu, M. Mahmood, A. Karmakar, D. Casciano, S. Ali, A.S. Biris, Toxicity and efficacy of carbon nanotubes and graphene: The utility of carbon-based nanoparticles in nanomedicine, Drug Metab. Rev. 46 (2014) 232–246. https://doi.org/10.3109/03602532.2014.883406.
  • [23] C. He, Y. Hu, L. Yin, C. Tang, C. Yin, Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles, Biomaterials. 31 (2010) 3657–3666. https://doi.org/10.1016/j.biomaterials.2010.01.065.
  • [24] L.A. Zadeh, Fuzzy sets, Inf. Control. 8 (1965) 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X.
  • [25] K.T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets Syst. 20 (1986) 87–96. https://doi.org/10.1016/S0165-0114(86)80034-3.
  • [26] Z. Xu, R.R. Yager, Some geometric aggregation operators based on intuitionistic fuzzy sets, Int. J. Gen. Syst. 35 (2006) 417–433. https://doi.org/10.1080/03081070600574353.
  • [27] E. Szmidt, J. Kacprzyk, Distances between intuitionistic fuzzy sets, Fuzzy Sets Syst. 114 (2000) 505–518. https://doi.org/10.1016/S0165-0114(98)00244-9.
  • [28] D.H. Hong, C.H. Choi, Multicriteria fuzzy decision-making problems based on vague set theory, Fuzzy Sets Syst. 114 (2000) 103–113. https://doi.org/10.1016/S0165-0114(98)00271-1.
  • [29] J. Ren, D. Xu, H. Cao, S. Wei, L. Dong, M.E. Goodsite, Sustainability decision support framework for industrial system prioritization, AIChE J. 62 (2016) 108–130. https://doi.org/10.1002/aic.15039.
  • [30] J. Ren, X. Ren, Sustainability ranking of energy storage technologies under uncertainties, J. Clean. Prod. 170 (2018) 1387–1398. https://doi.org/10.1016/j.jclepro.2017.09.229.
  • [31] X.Z. Shui, D.Q. Li, A possibility based method for priorities of interval judgment matrix, Chinese J. Manag. Sci. 11 (2003) 63–65.
  • [32] T.L. Saaty, Decision making with the Analytic Hierarchy Process, Sci. Iran. 9 (2002) 215–229. https://doi.org/10.1504/ijssci.2008.017590.
  • [33] J. Ren, X. Ren, H. Liang, L. Dong, L. Zhang, X. Luo, Y. Yang, Z. Gao, Multi-actor multi-criteria sustainability assessment framework for energy and industrial systems in life cycle perspective under uncertainties. Part 2: improved extension theory, Int. J. Life Cycle Assess. 22 (2017) 1406–1417. https://doi.org/10.1007/s11367-016-1252-0.
  • [34] M. Keshavarz Ghorabaee, E.K. Zavadskas, Z. Turskis, J. Antucheviciene, A new combinative distance-based assessment (CODAS) method for multi-criteria decision-making, Econ. Comput. Econ. Cybern. Stud. Res. 50 (2016) 25–44.
  • [35] S. Pramanik, D. Mukhopadhyaya, Grey relational analysis based intuitionistic fuzzy multi-criteria group decision-making approach for teacher selection in Higher Education, Int. J. Comput. Appl. 34 (2011) 21–29. https://doi.org/10.5120/4138-5985.
  • [36] Z. Xu, Intuitionistic fuzzy aggregation operators, IEEE Trans. Fuzzy Syst. 15 (2007) 1179–1187. https://doi.org/10.1109/TFUZZ.2006.890678.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-707f85bd-5957-4382-b84b-956204f998b9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.