Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first previous next last
cannonical link button

http://yadda.icm.edu.pl:443/baztech/element/bwmeta1.element.baztech-707c2fbc-b3bf-40b4-b18a-1a095cc8b4ac

Czasopismo

Environment Protection Engineering

Tytuł artykułu

Apparent elimination of inhibition phenomenon caused by proper design of a bubble tank bioreactor

Autorzy Tabiś, B.  Skoneczny, Sz. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
Abstrakty
EN The paper concerns an aerobic microbiological process occurring in a bubble tank bioreactor. If the process is inhibited by a carbonaceous substrate, then the steady states characteristics obtained using models without biofilm indicates a danger of irreversible washout of the biomass. It was shown that taking into account the biofilm immobilized on bioreactor’s walls and proper design of the bioreactor can lead to disappearance of the region of the multiple steady-states, i.e. to disappearance of the turning point at the steady state branches. Therefore, the operation of the bioreactor is safe in a wide range of feed flow rates, even those leading to the washout of the biomass from the liquid phase. This property was called apparent elimination of inhibition phenomenon.
Słowa kluczowe
PL biofilmy   bioreaktory   procesy mikrobiologiczne  
EN biofilms   bioreactors   tanks (containers)   microbiological process  
Wydawca Oficyna Wydawnicza Politechniki Wrocławskiej
Czasopismo Environment Protection Engineering
Rocznik 2014
Tom Vol. 40, nr 4
Strony 105--117
Opis fizyczny Bibliogr. 20 poz., tab., rys.
Twórcy
autor Tabiś, B.
  • Institute of Chemical and Process Engineering, Cracow University of Technology, btabis@pk.edu.pl
autor Skoneczny, Sz.
  • Institute of Chemical and Process Engineering, Cracow University of Technology
Bibliografia
[1] AJBAR A., Stability analysis of the biodegradation of mixed wastes in a continuous bioreactor with cell recycle, Water Res., 2001, 35 (5), 1201.
[2] DUNN I.J., HEINZE E., INGHAM J., PRENOSIL J.E., Biological reaction engineering, Wiley, Weinheim 2003.
[3] STAMOU A.I., Modelling of oxidation ditches using an open channel flow 1-D advection-dispersion equation and ASM1 process description, Water Sci. Technol., 1997, 36 (5), 269.
[4] MAKINIA J., WELLS S.A., A general model of the activated sludge reactor with dispersive flow. I. Model development and parameter estimation, Water Res., 2000, 34 (16), 3987.
[5] MAKINIA J., WELLS S.A., A general model of the activated sludge reactor with dispersive flow. II. Model verification and application, Water Res., 2000, 34 (16), 3997.
[6] LOOSDRECHT M.C.M., EIKELBOOM D., GJALTEMA A., MULDER A., TIJHUIS L., HEIJNEN J.J., Biofilm structures, Wat. Sci. Technol., 1995, 32 (8), 35.
[7] EBERL H.J., PICIOREANU C., HEIJNEN J.J., LOOSDRECHT M.C.M., A three-dimensional numerical study on the correlation of spatial structure, hydrodynamic conditions, and mass transfer and conversion in biofilms, Chem. Eng. Sci., 2000, 55 (24), 6209.
[8] TIJHUIS L., HIJMAN B., LOOSDRECHT M.C.M., HEIJNEN J.J., Influence of detachment, substrate loading and reactor scale on the formation of biofilms in airlift reactors, Appl. Microbiol. Biotechnol., 1996, 45 (1–2), 7.
[9] SHIEH W.K., MULCAHY L.I., LA MOTTA E.J., Mathematical model for the fluidized bed biofilm reactor, Enzyme Microb. Technol., 1982, 4 (4), 269.
[10] TANG W.T., WISECARVER K., FAN L.S., Dynamics of a draft tube gas–liquid–solid fluidized bed bioreactor for phenol degradation, Chem. Eng. Sci., 1987, 42 (9), 2123.
[11] WISECARVER K.D., FAN L.S., Biological phenol degradation in a gas–liquid–solid fluidized bed reactor, Biotechnol. Bioeng., 1989, 33 (8), 1029.
[12] TABIŚ B., SIUDZIŃSKA R., Influence of biomass hold-up on the aeration conditions of microorganisms in an aerobic biodegradation process operated in a cascade of bioreactors, Chem. Proc. Eng., 2006, 27 (4), 1431.
[13] SEKER S., BEYENAL H., SALIH B., TANYOLAC A., Multi-substrate growth kinetics of Pseudomonas putida for phenol removal, Appl. Microbiol. Biotechnol., 1997, 47 (5), 610.
[14] SHAH Y.Y., KELKAR B.G., GODBOLE S.P., DECKWER W.D., Design parameters estimations for bubble column reactors, AIChE J., 1982, 28 (3), 353.
[15] PICIOREANU C., LOOSDRECHT M.C.M, HEIJNEN J.J., A theoretical study on the effect of surface roughness on mass transport and transformation in biofilms, Biotech. Bioeng., 2000, 68 (4), 355.
[16] TABIŚ B., Principles of chemical reactors engineering, Wydawnictwo WNT, Warsaw 2000 (in Polish).
[17] TABIŚ B., SKONECZNY S., Diffusional penetration depths in biofilms, Chem. Eng. Proc., 2010, 31 (4), 837.
[18] TANG W.T., FAN L.S., Steady state phenol degradation in a draft-tube, gas–liquid–solid fluidized--bed bioreactor, AIChE J., 1987, 33 (2), 239.
[19] BEYENAL H., ŞEKER Ş., TANYOLAÇ A., SALIH B., Diffusion coefficients of phenol and oxygen in a biofilm of Pseudomonas putida, AIChE J., 1997, 43 (1), 243.
[20] HOBLER T., Diffusion of mass transfer and absorbers, Wydawnictwo WNT, Warsaw 1976 (in Polish).
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-707c2fbc-b3bf-40b4-b18a-1a095cc8b4ac
Identyfikatory
DOI 10.5277/epe140409