PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Differentiable programming for the autonomous movement planning of a small vessel

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work we explore the use of differentiable programming to allow autonomous movement planning of a small vessel. We aim for an end to end architecture where the machine learning algorithm directly controls engine power and rudder movements of a simulated vessel to reach a defined goal. Differentiable programming is a novel machine learning paradigm, that allows to define a systems parameterized response to control commands in imperative computer code and to use automatic differentiation and analysis of the information flow from the controlling inputs and parameters to the resulting trajectory to compute derivatives to be used as search directions in an iterative algorithm to optimize a goal function. Initially the method does not know about any manoeuvring or the vessels response to control commands. The method autonomously learns the vessels behaviour from several simulation runs. Finally, we will show how the simulated vessel is able to fulfil some small missions, like crossing a flowing river while avoiding crossing traffic.
Twórcy
autor
  • German Aerospace Center, Neustrelitz, Germany
autor
  • University of Rostock, Rostock, Germany
Bibliografia
  • 1. Bottou, L., Curtis, F.E., Nocedal, J.: Optimization Methods for Large-Scale Machine Learning. (2018).
  • 2. Hesselbarth, A., Medina, D., Ziebold, R., Sandler, M., Hoppe, M., Uhlemann, M.: Enabling Assistance Functions for the Safe Navigation of Inland Waterways. IEEE Intelligent Transportation Systems Magazine. 12, 3, 123–135 (2020). https://doi.org/10.1109/MITS.2020.2994103.
  • 3. Hu, Y.: DiffTaichi: Differentiable Programming for Physical Simulation, https://github.com/yuanming-hu/difftaichi, last accessed 2021/04/27.
  • 4. Hu, Y., Anderson, L., Li, T.-M., Sun, Q., Carr, N., Ragan-Kelley, J., Durand, F.: Differentiable Programming for Physical Simulation. Presented at the International Conference on Learning Representations (2020).
  • 5. Kiefer, J., Wolfowitz, J.: Stochastic Estimation of the Maximum of a Regression Function. The Annals of Mathematical Statistics. 23, 3, 462–466 (1952). https://doi.org/10.1214/aoms/1177729392.
  • 6. Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. Presented at the 3rd International Conference for Learning Representations , San Diego (2015).
  • 7. Lloyd’s Register Groupe: Design Code for Unmanned Marine Systems. (2017).
  • 8. Medina, D., Vilà-Valls, J., Hesselbarth, A., Ziebold, R., García, J.: On the Recursive Joint Position and Attitude Determination in Multi-Antenna GNSS Platforms. Remote Sensing. 12, 12, (2020). https://doi.org/10.3390/rs12121955.
  • 9. Robbins, H., Monro, S.: A Stochastic Approximation Method. The Annals of Mathematical Statistics. 22, 3, 400–407 (1951).
  • 10. Rødseth, Ø., Nordahl, H.: Definition of autonomy levels for merchant ships, Report from NFAS, Norwegian Forum for Autonomous Ships. (2017). https://doi.org/10.13140/RG.2.2.21069.08163.
  • 11. SAE International: J3016B: Taxonomy and Definitions for Terms Related to Driving Automation Systems for On-Road Motor Vehicles - SAE International, https://www.sae.org/standards/content/j3016_201806/, last accessed 2021/04/27.
  • 12. Schubert, A.U., Kurowski, M., Damerius, R., Fischer, S., Gluch, M., Baldauf, M., Jeinsch, T.: From Manoeuvre Assistance to Manoeuvre Automation. In: Journal of Physics: Conference Series. , Trondheim, Norway (2019). https://doi.org/10.1088/1742-6596/1357/1/012006.
  • 13. Schubert, A.U., Kurowski, M., Gluch, M., Simanski, O., Jeinsch, T.: Manoeuvring Automation towards Autonomous Shipping. In: Proceedings of the International Ship Control Systems Symposium (iSCSS). , Glasgow, UK (2018). https://doi.org/10.24868/issn.2631-8741.2018.020.
  • 14. Żelazny, K.: Approximate Method of Calculating Forces on Rudder During Ship Sailing on a Shipping Route. TransNav, the International Journal on Marine Navigation and Safety of Sea Transportation. 8, 3, 459–464 (2014). https://doi.org/10.12716/1001.08.03.18.
  • 15. Ziebold, R., Gewies, S.: Long Term Validation of High Precision RTK Positioning Onboard a Ferry Vessel Using the MGBAS in the Research Port of Rostock. TransNav, the International Journal on Marine Navigation and Safety of Sea Transportation. 11, 3, 433–440 (2017). https://doi.org/10.12716/1001.11.03.06.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-707b8a85-df36-412e-ab0b-8587f60a439f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.