PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of the Pharmaceutical Residues on Some Physical and Mechanical Properties of Silty-Clay Soil

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The contamination caused by pharmaceuticals is recognized as one of the most severe forms of environmental pollution. Many medicines and medical waste are dumped on the land, especially near hospitals, medical clinics, stores, and others, thus the aim of the study. The physical and mechanical of soil properties and tetracycline in leachate were studied. The sample extractor device (Shelby tube) was used to take undisturbed samples with a number of (6) tetracycline solutions added monthly to the soil samples, for a period of 6 months. The obtained results showed that silty clay is a type of this soil, the unconfined compression strength decreases with months to 6 months, while the effect on Atterberg’s limits (liquid and shrinkage limit) showed the soil became softer, lowering the value of the liquid limit. The tetracycline test in leachate water decreased with time, due to the soil adsorbed tetracycline. First-order is suitable for the kinetic model. Finally, the tetracycline drug effect on the physical and mechanical properties of soil was studied.
Twórcy
  • Civil Engineering Department, University of Technology, 10066, Baghdad, Iraq
  • Civil Engineering Department, University of Technology, 10066, Baghdad, Iraq
  • Civil Engineering Department, University of Technology, 10066, Baghdad, Iraq
  • Civil Engineering Department, University of Technology, 10066, Baghdad, Iraq
Bibliografia
  • 1. IUPAC. Compendium of Chemical Terminology, 2nd ed. (the «Gold Book»). Compiled by A.D. McNaught and A. Wilkinson. Blackwell Scientific Publications, Oxford (1997). Online version (2019) created by S.J. Chalk. https://doi.org/10.1351/goldbook.
  • 2. U.S. National Library of Medicine, 8600 Rockville Pike, Bethesda, MD 20894. National Institutes of Health, Health & Human Services, Freedom of Information Act, HHS Vulnerability Disclosure Policy, Drug Information Portal Mobile Site Last updated: Mar 2022.
  • 3. Allen D.G., Pringle J.K., Smith D.A., Pasloske K. 2005. Hand book of veterinary drugs, 2nd edition.
  • 4. Manjula N.G., Patil G.C.M.A. , Gaddad S.M., Shivannavar C.T. 2013. Incidence of Urinary Tract Infections and Its Aetiological Agents among Pregnant Women in Karnataka Region. Advances in Microbiology, 3(6).
  • 5. Koch N., Islam N.F., Sonowal S., Prasad R., Sarma H. 2021. Environmental antibiotics and resistance genes as emerging contaminants: Methods of detection and bioremediation. Curr. Res. Microb. Sci. 14(2), 100027. doi: 10.1016/j.crmicr.2021.100027. Collection 2021 Dec. PMID: 34841318
  • 6. Kotchen M., Kallaos J., Wheeler K., Wong C., Zahller M. 2009. Pharmaceuticals in wastewater: Behavior, preferences, and willingness to pay for a disposal program. Journal of Environmental Management, 90, 1476–1482.
  • 7. Kumar A., Chandra R. 2020. Ligninolytic enzymes and its mechanisms for degradation of lignocellulosic waste in environment, Heliyon, 19; 6(2): e03170. doi: 10.1016/.e03170.
  • 8. BNF and British National Formulary for Children, 2022 Joint and Paediatric Formulary Committees, Published jointly by the British Medical Association, the Royal Pharmaceutical Society, the Royal College of Paediatrics and Child Health, and the Neonatal and Paediatric Pharmacists Group.
  • 9. Metallinou D., Nanou C., Sarantaki A., Lazarou E., Liagkou A., Lykeridou K. 2021. Chlamydial Infection DOI: 10.5772/intechopen.96501
  • 10. Hamscher G., Sczesny S., Höper H., Nau H., 2002, Determination of persistent tetracycline residues in soil fertilizedwith liquid manure by high-performance liquid chromatography with electrospray ionization tandem mass spectrometry. Anal. Chem., 74(7), 1509–1518.
  • 11. Sarmah A.K., Meyer M.T., Alistair B.A. 2006. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere, 65(5), 725-759.
  • 12. Kay P., Blackwell P.A., Alistair B.A. 2005. Column studies to investigate the fate of veterinary antibiotics in clay soils following slurry application to agricultural land. Chemosphere. Jul;60(4):497-507. Epub 2005 Feb 23.
  • 13. Pils J.R.V., Laird D.A. 2007. Sorption of tetracycline and chlortetracycline on K- and Ca-saturated soil clays, humic substances, and clay−humic complexes. Environ. Sci. Technol., 41(6), 1928–1933.
  • 14. Conde-Cid M., Núñez-Delgado A., Fernández-Sanjurjo M.J., Álvarez-Rodríguez E., Fernández-Calviño D., Arias-Estévez M. 2020. Tetracycline and sulfonamide antibiotics in soils: presence, fate and environmental risks. Processes, 8, 1479; doi:10.3390/pr8111479
  • 15. lmeyer A.S., Petri M.S., Höper H., Hamscher G. 2020. Long-term monitoring of sulfonamides and tetracyclines in manure amended soils and leachate samples – A follow-up study. Heliyon, 6(8), e04656, https://doi.org/10.1016/j.heliyon.2020.e04656
  • 16. Cycoń M., Mrozik A., Piotrowska-Seget Z. 2019. Antibiotics in the soil environment—degradation and their impact on microbial activity and diversity. Front Microbiol., 10, 338. doi: 10.3389/fmicb.2019.00338
  • 17. Singer A.C., Shaw H., Rhodes V., Hart A. 2016. Review of antimicrobial resistance in the environment and its relevance to environmental regulators. Front Microbiol., 7, 1728. doi: 10.3389/fmicb.2016.01728
  • 18. Halford B. 2008. Pharmaceuticals have been finding their way into our environment for a long time, but just what are they doing there. Chemical and Engineering News, 86(8), 13-17.
  • 19. Jassem Q.A.K., Rashid G.Y., Ali H.H., Ali A.K. 2009. Some negative effects of sewage water on clay soils. Proceed. of 6th Engineering Conference Collage of Engineering, Environmental & Survey Engineering.
  • 20. Rashid G.Y., Tariq S. 2010. Some negative effects of wastewater on clay soils. Journal of Engineering and Technology, 28(22).
  • 21. ASTM (ASTM E100-19) 2019. Standard Specification for ASTM Hydrometers. Book of Standards Vol. 14.03 DOI: 10.1520/E0100-19, ICS Code: 17.060
  • 22. ASTM (ASTM D4318-17e1) 2018. Standard Specification for ASTM Hydrometers. Book of Standards, Vol. 04.08. Developed by Subcommittee: D18.03, Pages: 20, DOI: 10.1520/D4318-17E01, ICS Code: 93.020
  • 23. ASTM (ASTM D2166-06) 2010. Standard Test Method for Unconfined Compressive Strength of Cohesive Soil. Book of Standards, Vol. 04.08. Developed by Subcommittee: D18.05 Pages: 6 DOI: 10.1520/D2166-06 ICS Code: 93.020
  • 24. Nief R.A., Edress S.B. 2018. Assay of tetracycline in pharmaceutical preparations, spiked industrial wastewater and chicken meat samples using visible specrophotometer technique. Bas. J. Vet. Res., 17(2).
  • 25. Wang, S. 2008. A comparative study of Fenton and Fenton-like reaction kinetics in decolourisation of wastewater. Journal of Dyes and Pigments, 76(3), 714–720.
  • 26. Emami F.A.R., Tehrani-Bagha K.F., Gharanjig, Menger M. 2010. Kinetic study of the factors controlling Fenton-promoted destruction of a nonbiodegradable dye. Journal of Desalination, 257: 124–128.
  • 27. Kawanga, KD, Gatebe E, Mauti GO, Mauti EM. 2016. Kinetic, sorption isotherms, pseudo-first-order model and pseudo-second-order model studies of Cu(II) and Pb(II) using defatted Moringa Oleifera seed powder. The Journal of Phytopharmacology; 5(2):71–78.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-707ac2b7-05dd-4b66-8192-7844fa713da4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.