PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Colloidal Metal Surfaces as Biosensors of Biological Samples

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Colloidal solutions of silver (AgNPs), gold (AuNPs), and platinum nanoparticles (PtNps) obtained under controlled conditions in an aqueous media by chemical methods were used as effective biosensors of biological compounds such as bombesins (BN). The BN adsorption at the metal/aqueous interface was investigated by surface-enhanced Raman scattering (SERS). Briefly, the spectral pattern of BN in the silver, gold, and platinum sols is strongly influenced by the indole ring vibrations of L-tryptophan at position 8 of the amino acid sequence (Trp8). In addition, L-methionine (Met) at the C-terminus determines the BN adsorption, mainly onto the AuNPs and AgNPs surfaces.
Rocznik
Strony
7--10
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
autor
  • AGH University of Science and Technology, Faculty of Foundry Engineering
autor
  • University of Warsaw, Faculty of Chemistry, Pasteura 1, 02-093 Warsaw, Poland
  • AGH University of Science and Technology, Faculty of Foundry Engineering
Bibliografia
  • [1] Annamalai A., Sarah T.B., Niji A.J., Sudha D. & Christina P. (2011). Biosynthesis and characterization of silver and gold nanoparticles using aqueous leaf extraction of Phyllanthus amarus Schum & Thonn. World Applied Sciences Journal, 8(13), 1833–1840.
  • [2] Raimondi F., Scherer G.G. & Kotz R. (2005). Nanoparticles in energy technology: examples from electrochemisy and catalysis. Chemie International Edition, 44(56), 2190–2209.
  • [3] Rubilar O. (2013). Biogenic nanoparticles: Copper, copper oxides, copper sulphides, complex copper nanostructures and their applications. Biotechnology Letters, 35(54), 1365–1375.
  • [4] Bouvree A., Feller J.F., Castro M., Grohen Y. & Rinaudo M. (2009). Conductive polymer nano-biocomposites (CPC): chitosan-carbon nanoparticle a good candidate to design polar vapour sensors. Sensors and Actuators B: Chemical, 138(6), 138–147.
  • [5] Park S. & Kim H. (2014). Flash light sintering of nickel nanoparticles for printed electronics. Thin Solid Films, 500, 575–581.
  • [6] Shen W., Zhang X., Huang Q., Xu Q. & Song W. (2014). Preparation
  • of solid silver nanoparticles for inkjet printed flexible electronics with high conductivity. Nanoscale, 6(8), 1622–1628.
  • [7] Akbarian F., Dunn B.S & Zink J.I. (1995). Surface-enhanced Raman Spectroscopy using photodeposited gold particles in porous sol-gel silicates. Journal of Physical Chemistry, 98(6), 3892–3894.
  • [8] Liu Z., Yang Z.L., Cui L., Ren B. & Tian Z.Q. (2007). Electrochemically roughened palladium electrodes for surface-enhanced Raman spectroscopy: methodology, mechanism and application. Journal of Physical Chemistry C, 111(15), 1770–1775.
  • [9] Podstawka-Proniewicz E., Sobolewski D., Prahl A., Kim Y., Proniewicz L.M. (2012). Structure and conformation of Arg8 vasopressin modified analogs. Journal of Raman Spectroscopy, 43(16), 51–60.
  • [10] Volkan M., Stokes D.L. & Vo-Dinh T. (1999). A new surfaceenhanced Raman scattering substrate based on silver nanoparticles in sol-gel. Journal of Raman Spectroscopy, 30(20), 1057–1065.
  • [11] Fleischmann M., Hendra P.J. & McQuillan A.J. (1974). Raman spectra of pyridine adsorbed at a silver electrode. Chemical Physics Letters, 26(10), 163–166.
  • [12] Zeisel D., Deckert V., Zenobi R. & Vo-Dinh T. (1998). Near-field surface-enhanced Raman spectroscopy of dye molecules adsorbed on silver island film. Chemical Physics Letters, 283(43), 381–385.
  • [13] Dick L.A., McFarland A.D., Haynes C.L. & Van Duyne R.P. (2002). Metal film over nanosphere (MFON) electrodes for surfaceenhanced Raman spectroscopy (SERS): improvements in surface nanostructure stability and suppression of irreversible loss. Journal of Physical Chemistry B, 106(16), 853–860.
  • [14] Podstawka E., Ozaki Y. & Proniewicz L.M. (2005). Part III: Surface-enhanced Raman scattering of amino acids and their homoipeptide monolayers deposited onto colloidal gold surface. Applied Spectroscopy, 59(12), 1516–1526.
  • [15] Podstawka-Proniewicz E., Ozaki Y., Kim Y., Xu, Y. & Proniewicz L.M. (2011). Surface-enhanced Raman scattering studies on bombesin, its selected fragments and related peptides adsorbed at the silver colloidal surfac. Applied Surface Science, 89, 8246–8252.
  • [16] Tąta A., Szkudlarek A., Kim Y. & Proniewicz E. (2016). Adsorption of bombesin and its carboxyl terminal fragments onto the colloidal gold nanoparticles: SERS studies. Vibrational Spectroscopy, 84, 1–6.
  • [17] Tsuboi M., Overman S.A., Nakamura K., Rodriguez-Casado A. & Thomas G.J.Jr. (1996). Orientation and interactions of an essential tryptophan (Trp-38) in the capsid subunit of Pf3 filamentous virus. Journal of Molecular Structure, 379, 43–50.
  • [18] Rivier J.E. & Brown M.R. (1978). The effects of the phyllolitorin analogue [desTrp3, Leu8]phyllolitorin on scratching induced by bombesin and related peptides in rats. Biochemistry, 17, 1766–1771.
  • [19] Zachary E. & Rozengurt A. (1993). Handbook of experimental pharmacology „dendritic cells”: the use of dexamethasone in the induction of tolerogenic DCs. Handbook of Experimental Pharmacology, 106, 343–350.
  • [20] Gore M.E., Preston N., A’Hern R.P., Hill C., Mitchell P., Chang J. & Nicolson M. (1995). Platinum-Taxol non-cross resistance in epithelial ovarian cancer. British Journal of Cancer, 71(6), 1087–1098.
  • [21] Hoki-Hamzaki H., Iwabuchi M. & Makewa F. (2005). Development and function of bombesin-like peptides and their receptors. Journal of Developmental Biology, 49(4), 293–300.
  • [22] Moody T.M., Fagarasan M. & Zia F. (1995). A GRP receptor antagonist which inhibits small-cell lung-cancer growth. Life Sciences, 56(7), 521–529.
  • [23] Battey J.F. & Wada E. (1991). Two distinct receptor subtypes for mammalian bombesin-like peptides. Trends in Neurosciences, 14(12), 524–534.
  • [24] Markwalder R. & Reubi J.C. (1999). Gastrin-releasing peptide receptors in non-neoplastic and neoplastic human breast. Cancer Research, 59(6), 1152–1159.
  • [25] Januszewska A., Dercz G., Piwowar J., Jurczakowski R. & Le-wera A. (2013). Outstanding catalytic activity of ultrapure platinum nanoparticles. Chemistry: A European Journal, 19(50), 17159–17164.
  • [26] Shriver S.P. (2000). Sex-specific expression of gastrin-releasing peptide receptor: relationship to smoking history and risk of lung cancer. Journal of the National Cancer Institute, 92(1), 24–33.
  • [27] Mizushima S., Shimanouchi T., Nakamura K., Hayashi M. & Tsuchiya S. (1957). C–Cl stretching frequencies in relation to rotational isomerism. Journal of Chemical Physics, 26, 970–975.
  • [28] Nogami N., Sugeta H. & Miyazaw T. (1975). Vibrational Spectra and Molecular Structure of Ethyl Methyl Sulfide. Bulletin of the Chemical Society of Japan, 48(12), 2417–2425.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-70763c30-e052-4d6d-adbf-141cd6c3a289
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.