PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Validation of CFD predictions for flow over a full-scale formula student vehicle using PIV in real conditions

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Walidacja przewidywania CFD dla przepływu w pełnej skali formuły pojazdu studenckiego przy użyciu PIV w rzeczywistych warunkach
Języki publikacji
EN
Abstrakty
EN
Computational Fluid Dynamics (CFD) predictions are becoming an industry standard. They allow for making accurate predictions of complex problems without requiring extensive real-world testing, as well as saving time and money. However, it has been proven many times that the classic Reynolds-averaged Navier – Stokes (RANS) approach has its flaws and fails to provide highly accurate predictions. Even though CFD only approaches a physical solution, which can be reached only in very specific applications, it usually provides enough precision for engineering purposes. To reach a convergence with real-world physics, plenty of factors must be taken into consideration like mesh, boundary conditions, and turbulence models. In order to obtain a CFD simulation that accurately represents real physics, some kind of real-world validation must take place. For aerodynamics, it is usually done in wind tunnels, which are expensive to run but provide controllable conditions to match those specified in CFD. One of the many methods used to validate the calculations is Particle Image Velocimetry (PIV). This study tries to validate CFD of a Formula Student car using PIV, but in real-world conditions, without wind tunnel. The compact size of equipment required for PIV testing and flexibility of CFD boundary conditions allow for that.
PL
Prognozy obliczeniowej dynamiki płynów (CFD) stają się standardem branżowym. Pozwalają na dokładne przewidywanie złożonych problemów bez konieczności przeprowadzania rozległych testów w warunkach rzeczywistych, oszczędzając czas i pieniądze. Jednak wiele razy zostało udowodnione, że klasyczne podejście Reynoldsa uśrednione Navier-Stokes (RANS) ma swoje wady i nie zapewnia bardzo dokładnych prognoz. Mimo że CFD zbliża się tylko do rozwiązania fizycznego i może osiągnąć je tylko w bardzo specyficznych zastosowaniach, do celów inżynieryjnych zwykle zapewnia wystarczającą precyzję. Aby osiągnąć zbieżność z rzeczywistą fizyką, należy wziąć pod uwagę wiele czynników, takich jak siatka, warunki brzegowe i modele turbulencji. Aby mieć symulację CFD, która dokładnie odzwierciedla rzeczywistą fizykę, musi nastąpić pewnego rodzaju walidacja w prawdziwym świecie. Zwykle odbywa się to w tunelach aerodynamicznych, jeśli mówimy o aerodynamice, które są drogie w eksploatacji, ale zapewniają kontrolowane warunki, aby dopasować się do tych określonych w CFD. Jedną z wielu metod stosowanych do walidacji obliczeń jest Velocymetria obrazu cząstek (PIV). To badanie próbuje zweryfikować CFD samochodu Formula Student przy użyciu PIV, ale w rzeczywistych warunkach, bez tunelu aerodynamicznego. Umożliwiają to kompaktowe rozmiary sprzętu wymaganego do testów PIV i elastyczność warunków brzegowych CFD.
Rocznik
Strony
129--146
Opis fizyczny
Bibliogr. 3 poz., rys.
Twórcy
  • Wroclaw University of Science and Technology
Bibliografia
  • [1] https://www.dantecdynamics.com/solutions-applications/solutions/fluid-mechanics/particle-image-velocimetry-piv/measurement-principles-of-piv/ 2019. (accessed: 25.05.2021)
  • [2] RAFFEL M., WILLERT C., WERELEY S., KOMPENNHANS J., Particle Image Velocimetry A Practical Guide, second edition, Springer, 2007.
  • [3] SIEMENS, STAR CCM+Users Guide, 2019.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-70757079-7cd1-44b2-8e50-65c9b203ea82
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.