PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Potrzeba ochrony oczu przed promieniowaniem UV

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
PL
Abstrakty
PL
Czy powinniśmy zalecać naszym pacjentom korzystanie z ochrony oczu przed szkodliwym promieniowaniem? Profesor James Wolffsohn dokonuje przeglądu wyników najnowszych badań dotyczących tego zagadnienia. Obecnie niewiele osób mogłoby zakwestionować niekorzystny wpływ promieniowania słonecznego na skórę i poddawać w wątpliwość sens stosowania jej ochrony przed szkodliwą ekspozycją. A zatem jest niezwykle ważne, aby określić rodzaj dowodów dostępnych w zrecenzowanej literaturze na temat wpływu tego promieniowania na rozwój uszkodzeń posłonecznych w obrębie oczu. Dowody te pomogą nam zrozumieć potrzebę zwiększania świadomości na temat istnienia niekorzystnego wpływu promieni UV na oczy, a w konsekwencji pomogą naszym pacjentom lepiej chronić swoje oczy.
Czasopismo
Rocznik
Tom
Strony
24--28
Opis fizyczny
Bibliogr. 57 poz., fot., rys., tab.
Twórcy
autor
  • School of Life and Health Sciences
Bibliografia
  • 1. Cullen A.P. Ozone Depletion and Solar Ultraviolet Radiation: Ocular effects, a United Nations environment programme perspective. Eye & Contact Lens, 2011; 37: 185-190
  • 2. Norval M., Lucas R., Cullen A.P., et al. The human health effects of ozone depletion and interactions with climate change. Photochem Photobiol Sci, 2011; 10: 199-225
  • 3. Reiter R.J., Tan D.X., Fuentes-Broto L. Melatonin: A multitasking molecule. Prog Brain Res, 2010; 181: 127-151
  • 4. Skene D.J., Arendt J. Human circadian rhythms: Physiological and therapeutic relevance of light and melatonin. Ann Clin Biochem, 2006; 43: 344-353
  • 5. Cancer Council Australia. Slip, Slop, Slap, Seek, and Slide. Available at: http://www.cancer.org.au/cancersmartlifestyle/SunSmart/Campaignsandevents/SlipSlopSlapSeekSlide.htm. Accessed March 4, 2012
  • 6. Lucas R.M., McMichael A., Smith W., et al. Solar Ultraviolet Radiation. Global Burden of Disease from Solar Ultraviolet Radiation. Geneva, Switzerland, World Health Organization, 2006
  • 7. Lucas R.M. An epidemiological perspective of ultrafiolet exposure – public health concerns. Eye & Contact Lens, 2011; 37: 168-175
  • 8. West S.K., Munoz B., Istre J., et al. Mixed lens opacities and subsequent mortality. Arch Ophthalmol, 2000; 118: 393-397
  • 9. Hill D., White V., Marks R., et al. Changes in sun-related attitudes and behaviours, and reduced sunburn prevalence in a population at high risk of melanoma. Eur J Cancer Prev, 1993; 2: 447-456
  • 10. Tuchinda C., Srivannaboon S., Lim H.W. Photoprotection by window glass, automobile glass, and sunglasses. J Am Acad Dermatol, 2006; 54: 845-854
  • 11. Sliney D.H. Exposure geometry and spectral environment determine photobiological effects on the human eye. Photochem Photobiol, 2005; 81: 483-489
  • 12. Merriam J.C.. The concentration of light in the human lens. Trans Am Ophthalmol Soc, 1996; 94: 803-918
  • 13. Javitt J.C., Taylor H.R. Cataract and latitude. Doc Ophthalmol, 1995; 88: 307-325
  • 14. Diffey B.L., Larko O. Clinical climatology. Photodermatol, 1984; 1: 30-37
  • 15. World Health Organisation. Global Solar UV Index – A Practical Guide. 2002
  • 16. Sasaki H., Sakamoto Y., Schnider C., Fujita N., Hatsusaka N., Sliney D.H., Sasaki K. UV-B Exposure to the Eye Depending on Solar Altitude. Eye & Contact Lens, 2011; 37: 191-195
  • 17. Glickman R.D. Phototoxicity to the retina: Mechanisms of damage. Int J Toxicol, 2002; 21: 473-490
  • 18. Coroneo M.T., Muller-Stolzenburg N.W., Ho A. Peripheral light focusing by the anterior eye and the ophthalmohelioses. Ophthalmic Surg, 1991; 22: 705-711
  • 19. Podskochy A. Protective role of corneal epithelium against ultraviolet radiation damage. Acta Ophthalmol Scand, 2004; 82: 714-717
  • 20. Abraham A.G., Cox C., West S. The differential effect of ultraviolet light exposure on cataract rate across regions of the lens. Invest Ophthalmol Vis Sci, 2010; 51: 3919-3923
  • 21. Coroneo M.T., Muller-Stolzenburg N.W., Ho A. Peripheral light focusing by the anterior eye and the ophthalmohelioses. Ophthalmic Surg, 1991; 22: 705-711
  • 22. Kwok L.S., Daszynski D.C., Kuznetsov V.A., et al. Peripheral light focusing as a potential mechanism for phakic dysphotopsia and lens phototoxicity. Ophthalmic Physiol Opt, 2004; 24: 119-129
  • 23. Roberts J.E. Ultraviolet radiation as a risk factor for cataract and macular degeneration. Eye & Contact Lens, 2011; 37: 246-249
  • 24. Varma S.D., Kovtun S., Hegde K.R. Role of ultraviolet irradiation and oxidative stress in cataract formation – medical prevention by nutritional antioxidants and metabolic agonists. Eye & Contact Lens, 2011; 37: 233-245
  • 25. Dillon J., Atherton S.J. Time resolved spectroscopic studies on the intact human lens. Photochem Photobiol, 1990; 51: 465-468
  • 26. Dillon J. Photophysics and photobiology of the eye. J Photochem Photobiol B Biol, 1991; 10: 23-40
  • 27. Glickman R.D. Ultraviolet phototoxicity to the retina. Eye & Contact Lens, 2011; 37: 196-205
  • 28. Hu D.N., Simon J.D., Sarna T. Role of ocular melanin in ophthalmic physiology and pathology. Photochem Photobiol, 2008; 84: 639-644
  • 29. Roberts J.E. Ocular phototoxicity. J Photochem Photobiol B Biol, 2001; 64: 136-143
  • 30. Taylor H.R., West S., Munoz B., et al. The long-term effects of visible light on the eye. Arch Ophthal, 1992; 110: 99-104
  • 31. Rozanowska M., Jarvis-Evans J., Korytowski W., et al. Blue light induced reactivity of retinal age pigment. In vitro generation of oxygen-reactive species. J Biol Chem, 1995; 270: 18825-18830
  • 32. Davies S., Elliott M.H., Floor E., et al. Photocytotoxicity of lipofuscin in human retinal pigment epithelial cells. Free Radic Biol Med., 2001; 31: 256-265
  • 33. Khachik F., Bernstein P.S., Garland D.L. Identification of lutein and zeaxanthin oxidation products in human and monkey retinas. Invest Ophthalmol Vis Sci, 1997; 38: 1802-1811
  • 34. Bernstein P.S., Zhao D.Y., Wintch S.W., et al. Resonance Ramanmeasurement of macular carotenoids in normal subjects and in age-related macular degeneration patients. Ophthalmalogy, 2002; 109: 1780-1787
  • 35. Chalam K.V., Khetpal V., Rusovici R., Balaiya S. A review: role of ultraviolet radiation in age-related macular degeneration. Eye & Contact Lens, 2011; 37: 225-232
  • 36. Cruichshanks K.J., Klein R., Klein B.E., et al. Sunlight and the 5-year incidence of early age-related maculopathy: The Beaver Dam eye study. Arch Ophthalmol, 2001; 119: 246-250
  • 37. Taylor H.R., Munoz B., West S., et al. Visible light and risk of age-related macular degeneration. Trans Am Ophthalmol Soc, 1990; 88: 163-173
  • 38. Taylor H.R., West S., Munoz B., et al. The long-term effects of visible light on the eye. Arch Ophthalmol, 1992; 110: 99-104
  • 39. West S.K., Rosenthal F.S., Bressler N.M., et al. Exposure to sunlight and other risk factors for age related macular degeneration. Arch Ophthalmol, 1989; 107: 875-879
  • 40. Wang J.J., Foran S., Mitchell P. Age-specific prevalence and causes of bilateral and unilateral visual impairment in older Australians: The Blue Mountains Eye study. Clin Exp Ophthalmol, 2000; 28: 268-273
  • 41. Klein R., Klein B.E., Knudtson M.D., et al. Fifteen-year cumulative incidence of age-related macular degeneration. Ophthalmology, 2007; 114: 253-262
  • 42. Mukesh B.N., Dimitrov P.N., Leikin S., et al. Five year incidence of age-related maculopathy: Visual impairment project. Ophthalmology, 2004; 111: 1176-1182
  • 43. Wolffsohn J., Eperjesi F., Bartlett H. et al. Does Blocking Ultra-Violet Light with Contact Lenses Benefit Eye Health? BCLA Conference, Paper presentation 2012
  • 44. Chandler H. Ultraviolet absorption by contact lenses and the significance on the ocular anterior segment. Eye & Contact Lens, 2011; 37: 259-266
  • 45. Sliney D.H. Intraocular and crystalline lens protection from ultraviolet damage. Eye & Contact Lens, 2011; 37: 250-258
  • 46. Walsh J.E., Bergmanson J.P.G. Does the eye benefit from wearing ultraviolet-blocing contact lenses? Eye & Contact Lens, 2011; 37: 267-272
  • 47. Rosenthal F.S., Bakalian A.E., Taylor H.R. The effect of prescription eyewear on ocular exposure to ultraviolet radiation. Am J Pub Health, 1986; 76: 1216-1220
  • 48. Sasaki K., Sasaki H., Kojima M., et al. Epidemiological studiem on UV-related cataract in climatically different countries. J Epidemiol, 1999; 9(Suppl 6): S33-S38
  • 49. Sasaki H., Kawakami Y., Ono M., et al. Localization of cortical cataract in subjects of diverse races and latitude. Invest Ophthalmol Vis Res, 2003; 44: 4210-4214
  • 50. Hedblom E.E. Snowscape eye protection. Arch Environ Health, 1961; 2: 685-704
  • 51. Sliney D.H. Bright light, ultraviolet radiation and sunglasses. Dispens Opt, 1975; 36: 7-15
  • 52. Sliney D.H. Eye protective techniques for bright light. Ophthalmology, 1983; 90: 937-944
  • 53. American National Standards Institute (ANSI). American National Standard for Nonprescription Sunglasses and Fashion Eyewear – Requirements. New York, NY, ANSI, Standard Z80.3,2008
  • 54. British Standards Institution (BSI). Personal Eye Protection – Sunglasses and Sunglare Filters for General Use and Filters for Direct Observation of the Sun. Chiswick, United Kingdom, BSI. BS EN-1836, 2005
  • 55. Moore L., Ferreira J.T. Ultraviolet (UV) transmittance characteristics of daily disposable and silicone hydrogel contact lenses. Cont Lens Anterior Eye, 2006; 29: 115-122
  • 56. Andley U.P., Malome J.P. Townsend RR. Inhibition of Lens photodamage by UV-absorbing contact lenses. Invest Ophthalmol Vis Sci, 2011; 52: 8330-8341
  • 57. Giblin F.J., Lin L.-R., Leverenz V.R., Dang L. A class I (Senofilcon A) soft contact lens presents UVB-induced ocular effects, including cataract, in the rabbit in vivo. Invest Ophthalmol Vis Sci., 2011; 52: 3667-3775
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-706c53ad-ca30-4864-96f7-d8fa6d8e7552
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.