PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modeling and convergence analysis of directed energy deposition simulations with hybrid implicit / explicit and implicit solutions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Conventional metal manufacturing techniques are suitable for mass production. However, cheaper and faster alternatives are preferred for small batch sizes and individualized components. Directed energy deposition (DED) processes allow depositing metallic material in almost arbitrary shapes. They are characterized by cyclic heat input, hence heating and cooling every point in the workpiece several times. This temperature history leads to distribution of mechanical properties, distortions, residual stresses or even fatigue properties in the part. To avoid experimental trial-and-error optimization, different methods are available to simulate DED processes. Currently, the wire arc additive manufacturing (WAAM) is the most competitive DED process. In this work, a simulation method for the WAAM process is established and validated, which should be capable to calculate global effects (e.g. distortions, residual stresses) of real WAAM-processes with duration of hours and thousands of weld beads. The addition of beads and layers is simulated by the element birth and death technique. The elements are activated according to the movements of the heat source (arc). In this paper, the influence of the time step, the mesh size and the material properties of the inactive elements in hybrid implicit / explicit and fully implicit solutions are evaluated with respect to the computation time and stability. This investigation concludes several recommendations for AM-modelling. For example, a low Young’s modulus (100 N/mm2) for the inactive elements show nearly no influences on the welding simulation, but introduces numerical instabilities in case of multiple welding beads. The Young’s modulus should be increased to 1.000 N/mm2 for small mesh-sizes, small step-sizes and many beads, even when it introduces unwanted stresses.
Rocznik
Strony
94--107
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
  • Brandenburg University of Technology Cottbus–Senftenberg, Dept. of Mechanical Design and Manufacturing, Cottbus, Germany
autor
  • Brandenburg University of Technology Cottbus–Senftenberg, Dept. of Mechanical Design and Manufacturing, Cottbus, Germany
  • Brandenburg University of Technology Cottbus–Senftenberg, Dept. of Mechanical Design and Manufacturing, Cottbus, Germany
Bibliografia
  • [1] WILLIAMS S.W., MARTINA F., ADDISON A.C., DING J., PARDAL G., COLEGROVE P., 2015, Wire + Arc Additive Manufacturing, Materials Science and Technology, 32/7, 641–647.
  • [2] LIU G.R., LIU M., 2009, Smoothed particle hydrodynamics: A meshfree particle method, World Scientific Publishing Company, New Jersey, https://doi.org/10.1142/5340.
  • [3] ZHANG L., MICHALERIS P., 2004, Investigation of Lagrangian and Eulerian finite element methods for modeling the laser forming process, Finite Elements in Analysis and Design, 40/4, 383–405.
  • [4] DONEA J., HUERTA A., PONTHOT J.-Ph., RODRIGUEZ-FERRAN A., 2004, Arbitrary Lagrangian–Eulerian Methods, Chapter 14, Encyclopedia of Computational Mechanics, Edited by E. Stein, R. de Borst and Thomas J.R. Hughes, Volume 1, Fundamentals, John Wiley & Sons, Ltd., 413–437, ISBN: 0-470-84699-2.
  • [5] KUCHARIK M., LISKA R., VACHAL P., SHASHKOV M., 2006, Arbitrary Lagrangian-Eulerian (ALE) methods in compressible fluid dynamics, Programs and Algorithms of Numerical Mathematics, 13, 178–183.
  • [6] FERZIGER J.H., PERIĆ M., 2002, Computational Methods for Fluid Dynamics, Springer-Verlag Berlin Heidelberg NewYork, ISBN 3-540-42074-6.
  • [7] RAN W., CHENG W., QIN F., LUO X., 2011, GPU accelerated CESE method for 1D shock tube problems, Journal of Computational Physics, 230/24, 8797–8812.
  • [8] MISHRA B.K., RAJAMANI RAJ K., 1992, The discrete element method for the simulation of ball mills, Appl. Math. Modelling, 16/11, 598–604.
  • [9] LIANG D., JIAN W., SHAO S., CHEN R., YANG K., 2017, Incompressible SPH simulation of solitary wave interaction with movable seawalls, Journal of Fluids and Structures, 69, 72–88.
  • [10] BELYTSCHKO T., LU Y.Y., GU L., 1994, Element-free Galerkin methods, Int. J. for Numerical Methods in Engineering, 37/2, 229–256.
  • [11] BELLET M., HAMIDE M., 2013, Direct modeling of material deposit and identification of energy transfer in gas metal arc welding, Int. J. of Num. Meth. for HFF, 23/8, 1340–1355.
  • [12] CHENG G.C., VENKATACHARI B.S., CHANG C.L., CHANG S.C., 2011, Comparative study of different numerical approaches in space-time CESE framework for high-fidelity flow simulations, Computers & Fluids, 45/1, 47–54.
  • [13] WILLIAMS P.T., BAKER A.J., 1996, Incompressible Computational Fluid Dynamics and the Continuity Constraint Method for the Three-Dimensional Navier-Stokes Equations, Numerical Heat Transfer, Part B, Fundamentals, 29/2, 137–273.
  • [14] HAJIAZIZI M., BASTAN P., 2014, The elastoplastic analysis of a tunnel using the EFG method, A comparison of the EFGM with FEM and FDM, Applied Mathematics and Computation, 234, 82–113.
  • [15] ALSHAER A.W., ROGERS B.D., LI L., 2017, Smoothed Particle Hydrodynamics (SPH) modelling of transient heat transfer in pulsed laser ablation of Al and associated free-surface problems, Computational Materials Science, 127, 161–179.
  • [16] PENG C., XU G., WU W., YU H.S., WANG C., 2017, Multiphase SPH modeling of free surface flow in porous media with variable porosity, Computers and Geotechnics, 81, 239–248.
  • [17] NATSUI S., NASHIMOTO R., TAKAI H., KUMAGAI T., KIKUCHI T., SUZUKI R.O., 2016, SPH simulations of the behavior of the interface between two immiscible liquid stirred by the movement of a gas bubble, Chemical Engineering Science, 141, 342–355.
  • [18] RAHUL B., 2012, Using DEM to Solve Bulk Material Handling Problems, American Institute of Chemical Engineers (AIChE), 54–58.
  • [19] ABBASFARD H., EVANS G., MORENO-ATANASIO R., 2016, Effect of van der Waals force cut-off distance on adhesive collision parameters in DEM simulation, Powder Technology, 299, 9–18.
  • [20] HAREWOOD F.J., MCHUGH P.E., 2007, Comparison of the implicit and explicit finite element methods using crystal plasticity, Computational Materials Science, 39/2, 481–494.
  • [21] SUN J.S., LEE K.H., LEE H.P., 2000, Comparison of implicit and explicit finite element methods for dynamic problems, Journal of Materials Processing Technology, 105/1–2, 110–118.
  • [22] HU X., WAGONER R.H., DAEHN G.S., GHOSH S., 1994, Comparison of explicit and implicit finite element methods in the quasistatic simulation of uniaxial tension, Communications in Numerical Method in Engineering, 10/12, 993–1003.
  • [23] CHOI H.H., HWANG S.M., KANG Y.H., KIM J., KANG B.S., 2002, Comparison of Implicit and Explicit Finite-Element Methods for the Hydroforming Process of an Automobile Lower Arm, The International Journal of Advanced Manufacturing Technology, 20/6, 407–413.
  • [24] KORIC S., HIBBELER L.C.,THOMAS B.G., 2009, Explicit coupled thermo-mechanical finite element model of steel solidification, Int. J. for Numerical Methods in Engineering, 78/1, 1–31.
  • [25] YANG D.Y., JUNG D.W., SONG I.S., YOO D.J., LEE J. H., 1995, Comparative investigation into implicit, explicit, and iterative implicit/explicit schemes for the simulation of sheet-metal forming processes. Journal of Materials Processing Technology, 50/1–4, 39–53.
  • [26] LINDGREN, L.E., 2006, Numerical modelling of welding, Computer Methods in Applied Mechanics and Engineering, 195/48–49, 6710–6736.
  • [27] MURAKAWA H., MA N., HUANG H., 2015, Iterative substructure method employing concept of inherent strain for large-scale welding problems, Weld World, 59/1, 53–63.
  • [28] MA N., NARASAKI K., 2018, Simulation of welding thermal conduction and thermal stress using hybrid method of accelerated explicit and implicit FEM, J. Phys. Conf. Ser. 1063, 12073.
  • [29] ISRAR R., BUHL J., ELZE L., BAMBACH M., 2018, Simulation of different path strategies for wire-arc additive manufacturing with Lagrangian finite element methods, LS-DYNA Forum 2018, Bamberg Germany.
  • [30] LINDSTRÖM P., 2015. Improved CWM platform for modelling welding procedures and their effects on structural behaviour, PhD Thesis, University West, Trollhättan.
  • [31] NADIMI S., KHOUSHEHMEHR R.J., ROHANI B., MOSTAFAPOUR A., 2008, Investigation and Analysis of Weld Induced Residual Stresses in Two Dissimilar Pipes by Finite Element Modeling, J. of Applied Sciences, 8/6, 1014–1020.
  • [32] MONTEVECCHI F., VENTURINI G., SCIPPA A., CAMPATELLI G., 2016, Finite Element Modelling of Wire-arc-additive-manufacturing Process, Procedia CIRP, 55, 109–114.
  • [33] CHIUMENTI M., CERVERA M., SALMI A., AGELET DE SARACIBAR C., DIALAMI N., MATSUI K., 2010, Finite element modeling of multi-pass welding and shaped metal deposition processes, Computer Methods in Applied Mechanics and Engineering, 199/37–40, 2343–2359.
  • [34] ERHART T., Ed., 2011. Review of Solid Element Formulation in LS-DYNA, Properties, Limits, Advantages, Disadvantages, DYNAmore, Stuttgart.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7064f707-10a9-4780-beba-0094d6fb5692
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.