PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Description of algorithms for balancing numerical matrices and theirdivision into hierarchical levels according to their type and complexity

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Algorytmy bilansowania oraz hierarchizacji macierzy według ich typu i złożoności
Języki publikacji
EN
Abstrakty
EN
This article describes a set of algorithms for so-called balancing of numerical matrices, which were developed by the author. Each section consists of several algorithms that are divided into different levels. The order of these levels depended on the chronology of the creation of certain algorithms. Chronology also affected the complexity of these balancing algorithms, so it can be argued that the algorithms are described in order from the simplest level to the most complex. It is important to emphasize that the purpose of the article is to describe the actions on matrices that determine the balancing algorithm of a certain level, and practical application will be the next step.
PL
Artykuł przedstawia autorskie algorytmy bilansowania macierzy. Każdy rozdział składa się z kilku algorytmów, które są rozdzielone na różne poziomy. Te poziomy są uporządkowane w zależności od chronologii ich stworzenia. Podobnie chronologia ma wpływ na złożoność algorytmów zbilansowania, w związku z tym można stwierdzać, że algorytmy są uszeregowana według stopnia złożoności. Niniejszy artykuł jest pierwszym etapem pokazującym sposób zbilansowania pewnego poziomu macierzy, natomiast kolejnym etapem będzie efekt praktyczny.
Rocznik
Strony
44--49
Opis fizyczny
Bibliogr. 22 poz., rys.
Twórcy
autor
  • Lviv Polytechnic National University, Lviv, Ukraine,
  • Warsaw University of Technology, Warsaw, Poland
Bibliografia
  • [1] Agarwal S.: Symmetric Key Encryption using Iterated Fractal Functions. International Journal of Computer Network and Information Security 9(4)/2019, 1–9.
  • [2] Anisimov A. V., Kulyabko P. P.: Information systems and databases: A textbook for students of the faculty computer science and cybernetics. Kyiv 2017.
  • [3] Bogdanov A., Khovratovich D., Rechberger D.: Biclique Cryptanalysis of the Full AES. Advances in Cryptology – ASIACRYPT 2011. Lecture Notes in Computer Science 7073. Springer, Berlin 2011.
  • [4] Borecki M.: Risk level analysis in the selected (initial) stage of the project life cycle. Management and production engineering review 11(4)/2020, 104–112.
  • [5] Borecki M., Ciuba M., Kharchenko Y., Khanas Y.: Main aspects influencing the evaluation of atmospheric overvoltages in high-voltage networks. Bull. Pol. Ac.: Tech 69(1)/ 2021, 1–8.
  • [6] Buryachok V. L.: The choice of a rational method of generating passwords among many existing. Information security 25(1)/2019, 59–64. [7] Buryachok V. L.: Generate a password for wireless networks using variable rule of complication. Information protection 21(1)/2019, 52–59.
  • [8] Hughes J., Cybenko G.: Quantitative Metrics and Risk Assessment: The Three Tenets Model of Cybersecurity. Technology Innovation Management Review 2013, 15–24.
  • [9] Isa M. A. M., Hashim H., Ab Manan J. L., Adnan S. F. S., Mhmod R.: RF simulator for cryptographic protocol. IEEE International Conference on Control System, Computing and Engineering (ICCSCE), 2014, 518–523.
  • [10] Josefsson S., Leonard S.: Textual Encodings of PKIX, PKCS, and CMS Structures. Internet Engineering Task Force April 2015.
  • [11] Khanas, Y., Borecki, M.: Research on the use of algorithms for matrix transformations for encrypting text information. Security and Privacy 3(6)/2020, 1–13.
  • [12] Khanas Y., Ivanciv R., Litvinko S.: The algorithm for minimizing matrices in the given direction of reduction and the rules for their restoration. Visnyk of the National University "Lviv Polytechnic" 882/2017, 12–17.
  • [13] Khanas Y., Ivanciv R.: Application Mirroring of Matrices to Prevent Excessive Reduction. Perspective technologies and design methods of MEMST (MEMSTECH 2016), Lviv-Polyana 2016, 143–145.
  • [14] Krasilenko V. G.: Multifunctional parametric matrix-algebraic models (MAM) of cryptographic transformations (CP) with modular operations and their modeling. 72 NPK – conference materials, Odessa 2017, 123–128.
  • [15] Krasilenko V. G.: Improvement and modeling of electronic digital signatures of matrix type for textographic documents. Proceedings of the VI International Scientific and Practical Conference "Information Control Systems and Technologies" (IUST-Odessa-2017), Odessa 2017.
  • [16] Krasylenko V. G., Nikitovich D. V., Yatskovskaya R. O., Yatskovsky V. I.: Simulation of advanced multi-step 2D RSA algorithms for cryptographic transformations and blind electronic digital signature. Information processing systems 1(156)/2019, 92–100.
  • [17] Leurent G., Peyrin T.: SHA-1 is a Shambles. First Chosen-Prefix Collision on SHA-1 and Application to the PGP Web of Trust. Real World Crypto 2020.
  • [18] Lobur M. V., Ivantsiv R. D., Kolesnyk K. K., Khanas Y. Y.: Development of an algorithm for reducing matrices depending on their size and content. Scientific and Technical Journal "Instrumentation Technology" 2/2016, 29–31.
  • [19] Nazarkevich M. A., Dronyuk I. M., Troyan O. A., Tomashchuk T. Yu.: Development of a method of document protection by latent elements based on fractals. Information protection 17(1)/2015, 21–26.
  • [20] Nikonov V. G., Zobov A. I.: On the possibility of using fractal models in the construction of information security systems. Computational nanotechnology 1/2017, 39–49.
  • [21] Ortiz S. M., Parra O., Miguel J., Espitia R.: Encryption through the use of fractals. International Journal of Mathematical Analysis 11(21)/2017, 1029–1040.
  • [22] Wenliang Du: Computer Security: A Hands-on Approach. CreateSpace Independent Publishing Platform, 2017.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7061e196-90ab-4a88-92eb-be74350af7b8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.