PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Bankruptcy prediction in Visegrad Group countries

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Prognozowanie upadłości w krajach Grupy Wyszehradzkiej
Języki publikacji
EN
Abstrakty
EN
The novelty of the study is a comprehensive look at the problem of bankruptcy forecasting in Visegrad Group countries (V4) and making a comparison in relation to the achievements obtained in more developed western countries. The conducted research based on a systematic literature review of 151 publications indexed in Scopus and Web of Science and bibliometric analysis. The results showed that the main lines of research are from many perspectives unique compared to traditional western models, which are mainly given by different historical developments. Among the most predominant trends in the V4 countries, belongs relying on traditional classification algorithms with few exemptions of more advanced approaches, such as ensemble techniques. There are still many researchers using foreign bankruptcy forecasting models, which is an undesirable phenomenon due to their low efficiency. Although economically and culturally, these countries have many similarities, different predictors should be used in the process of developing bankruptcy prediction models. The conducted bibliometric analysis unveils the most influential papers, authors and periods of interest. Considering the number of publications and studies conducted, Hungary has a much smaller number than Slovakia, the Czech Republic and Poland. The results also showed challenges for further research, as most models rely on financial data, with limited focus on other predictors. In addition, most models are static in nature.
PL
Nowością badania jest kompleksowe spojrzenie na problematykę prognozowania upadłości w krajach Grupy Wyszehradzkiej (V4) i dokonanie porównania w relacji do osiągnięć uzyskanych w bardziej rozwiniętych krajach zachodnich. Badanie zostało przeprowadzone przy wykorzystaniu metody systematycznego przeglądu literatury 151 publikacji indeksowanych w bazach Scopus i Web of Science, a także analizy bibliometrycznej. Stanowi oryginalny wkład w obszar dotyczący prognozowania upadłości przedsiębiorstw, ze szczególnych uwzględnieniem krajów V4. Wyniki pokazały, że główne kierunki badań w wielu przypadkach różnią się w porównaniu z tradycyjnymi podejściem do modelowania predykcji upadłości w krajach zachodnich. Wynika to głównie z różnych zaszłości historycznych. Do najbardziej dominujących trendów w krajach V4 należy poleganie na tradycyjnych algorytmach klasyfikacji, z kilkoma wyjątkami bardziej zaawansowanych podejść, takich jak techniki zespołowe. Wciąż wielu badaczy korzysta z zagranicznych modeli prognozowania upadłości, co jest zjawiskiem niepożądanym ze względu na ich niską skuteczność. Chociaż pod względem gospodarczym i kulturowym kraje te wykazują wiele podobieństw, w procesie opracowywania modeli prognozowania upadłości zaleca się stosować różne predyktory. Przeprowadzona analiza bibliometryczna ujawniła najbardziej wpływowe prace, autorów i okresy zainteresowania tym obszarem badawczym. Biorąc pod uwagę liczbę publikacji i przeprowadzonych badań, Węgry mają ich znacznie mniej niż Słowacja, Czechy i Polska. Wyniki pokazały również wyzwania dla dalszych badań, ponieważ większość modeli opiera się na danych finansowych, z ograniczonym naciskiem na inne predyktory. Ponadto większość modeli ma charakter statyczny.
Rocznik
Strony
268--288
Opis fizyczny
Bibliogr. 99 poz., tab., rys.
Twórcy
  • Faculty of Management and Economics, Gdańsk University of Technology, Poland
autor
  • Faculty of Business and Management, Brno University of Technology, Czechia
Bibliografia
  • 1.Adamko, P., Siekelova, A., (2017). An Ensemble Model for Prediction of Crisis in Slovak Companies. Proceedings of International scientific conference Globalization and its socio-economic consequences, Part 1, 2017, Rajecke Teplice, Slovakia, pp. 1-7.
  • 2.Agarwal V., Taffler, R., (2008). Comparing the performance of market-based and accounting-based bankruptcy prediction models. Journal of Banking and Finance, 32(8), 1541- 1551.
  • 3.Alam, T.M., Shaukat, K. Mushtaq, M., Ali, Y., Khushi, M., Luo, S. and Wahab, A., (2021) Corporate Bankruptcy Prediction: An Approach Towards Better Corporate World. The Computer Journal, 64(11), 1731-1746.
  • 4.Alexy, M., (2015). Financial Health of Cities in Slovakia, Finance and risk 2015. Proceedings of the 17th International Scientific Conference: 23 - 24 November 2015, Bratislava, Slovak Republic, Vol. 1. pp. 111-117.
  • 5.Altman, E. I., (1968). Financial Ratios, Discriminant Analysis and the Prediction of Corporate Bankruptcy. The Journal of Finance, XXIII(4), 589-609.
  • 6.Aria, M., Cuccurullo, C., (2017). bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959-975.
  • 7.Augustyn, S., (2019). Predicting Bankruptcy of Polish Manufacturing Enterprises - An Alternative Model Based on Financial Ratios. Ad Alta-Journal of Interdisciplinary Research, 9(2), 311-314.
  • 8.Balcaen, S., Ooghe, H., (2006). 35 years of studies on business failure: an overview of the classic statistical methodologies and their related problems. The British Accounting Review, 38(1), 63-93.
  • 9.Balina, R., Idasz-Balina, M. and Achsani, N. A., (2021). Predicting Insolvency of the Construction Companies in the Creditworthiness Assessment Process - Empirical Evidence from Poland. Journal of Risk and Financial Management, 14, 453.
  • 10.Beade, Á., Rodríguez, M. and Santos, J., (2023). Multiperiod Bankruptcy Prediction Models with Interpretable Single Models. Computational Economics, 64(3), 1357-1390.
  • 11.Beaver, W. H., (1966). Financial Ratios as Predictors of Failure. Empirical Research in Accounting: Selected Studies. Journal of Accounting Research, Supplement, 5, 71-111.
  • 12.Beaver, W. H., (1968). Alternative Accounting Measures as Predictors of Failure. The Accounting Review, 43(1), 113-122.
  • 13.Berent, T., Bławat, B., Dietl, M., Krzyk, P. and Rejman, R., (2017). Firm’s default? new methodological approach and preliminary evidence from Poland. Equilibrium. Quarterly Journal of Economics and Economic Policy, 12(4), 753-773.
  • 14.Brożyna, J., Mentel, G. and Pisula, T., (2016). Statistical Methods of the Bankruptcy Prediction in the Logistics Sector in Poland and Slovakia. Transformations in Business and Economics, 15(37), 93-114.
  • 15.Civelek, M., Krajčik, V. and Fialova, V., (2023). The impacts of innovative and competitive abilities of SMEs on their different financial risk concerns: System approach. Oeconomia Copernicana, 14(1), 327-354.
  • 16.Delina, R., Packova, M., (2013). Prediction Bankruptcy Models Validation in Slovak Business Environment. E+ M Ekonomie a management, 16(3), 101-112.
  • 17.Dimitras, A. I., Zanakis, S. H. and Zopounidis, C., (1996). A survey of business failures with an emphasis on prediction methods and industrial applications. European Journal of Operational Research, 90, 487-513.
  • 18.Du Jardin, P., (2009). Bankruptcy prediction models: How to choose the most relevant variables? Bankers, Markets and Investors, 98, 39-46.
  • 19.Durica, M., Zvarikova, K., (2017). MDA vs. Logit bankruptcy models in the Slovak Republic, 11 th International Scientific Conference on Financial Management of Firms and Financial Institutions Ostrava VŠB-TU of Ostrava, Faculty of Economics, Department of Finance 6 th - 7 th September 2017, pp. 214-221.
  • 20.Durica, M., Frnda, J. and Svabova, L., (2023). Artificial neural network and decision tree-based modelling of non-prosperity of companies, Equilibrium. Quarterly Journal of Economics and Economic Policy, 18(4), 1105-1131.
  • 21.Fiala, R, Hedija, V., Dvorak, J. and Jansky, J., (2020). Are Profitable Firms Also Financially Healthy. Empirical Evidece For Pigbreeding Sector. Custos e Agronegocio on line, 16(1), 173-201.
  • 22.Gavurová, B., Janke, F., Packová, M. and Prídavok, M., (2017). Analysis of Impact of Using the Trend Variables on Bankruptcy Prediction Models Performance. Ekonomický časopis, 65, 370-383.
  • 23.Gavurová, B., Jencová, S., Bačík, R., Miskufová, M. and Letkovský, S., (2022). Artificial intelligence in predicting the bankruptcy of non-financial corporations. Oeconomia Copernicana, 13(4), 1215-1251.
  • 24.Gregova, E., Valaskova, K., Adamko, P., Tumpach, M. and Jaros, J., (2020). Predicting Financial Distress of Slovak Enterprises: Comparison of Selected Traditional and Learning Algorithms Methods. Sustainability, 12(10), 3954
  • 25.Grice, J. S., Dugan, M. T., (2001). The limitations of bankruptcy prediction models: Some cautions for the researchers. Review of Quantitative Finance and Accounting, 17, 151-166.
  • 26.Hampel, D., Vavrina, J. and Janova J., (2012). Predicting bankruptcy of companies based on the production function parameters, Proceedings of 30th International Conference Mathematical Methods in Economics, PTS I AND II, pp. 243-248.
  • 27.Horak, J., Vrbka, J. and Suler, P., (2020). Support Vector Machine Methods and Artificial Neural Networks Used for the Development of Bankruptcy Prediction Models and their Comparison. Journal of Risk and Financial Management, 13(3), 60.
  • 28.Horváthová, J., Mokrišová, M., (2020). Comparison of the Results of a Data Envelopment Analysis Model and Logit Model in Assessing Business Financial Health. Information, 11(3), 160.
  • 29.Horváthová, J., Mokrišová, M. and Petruška I., (2021) Selected Methods of Predicting Financial Health of Companies: Neural Networks Versus Discriminant Analysis. Information, 12(12), 505.
  • 30.Janoskova, K., Balcerzak, A. P. and Kral, P., (2024). An unconventional approach to evaluating the financial performance under critical macroeconomic disturbances: The case of public transport during the Covid-19 pandemic. Polish Journal of Management Studies, 29(2), 273-292.
  • 31.Jakubík, P., Teplý, P., (2011). The JT Index as an Indicator of Financial Stability of Corporate Sector. Prague Economic Papers, 20(2), 157-176.
  • 32.Jones, S., (2023). A literature survey of corporate failure prediction models. Journal of Accounting Literature, 45(2), 364-405.
  • 33.Kacer, M., Ochotnicky, P. and Alexy, M., (2019). The Altman’s Revised Z’-Score Model, Non-financial Information and Macroeconomic Variables: Case of Slovak SMEs. EKONOMICKY CASOPIS, 67(4), 335-366.
  • 34.Kaczmarek, J., Alonso, S. L. N., Sokołowski, A., Fijorek, K. and Denkowska, S., (2021). Financial threat profiles of industrial enterprises in Poland. Oeconomia Copernicana, 12(2), 463-498.
  • 35.Karas, M., Režňáková, M., (2014b). An Analysis of the Robustness of Bankruptcy Prediction Models - Industrial Concerns in the Czech Republic in the Years 1999-2013, VISION 2020: Sustainable Growth, Economic Development, and Global Competitiveness - Proceedings of the 23rd International Business Information Management Association Conference, IBIMA, pp. 988-997.
  • 36.Karas, M., Režňáková, M., (2013). Bankruptcy Prediction Model of Industrial Enterprises in the Czech Republic. International Journal of Mathematical Models and Methods in Applied Sciences, 5(7), 519-531.
  • 37.Karas, M., Režňáková, M., (2014a). A parametric or nonparametric approach for creating a new bankruptcy prediction model: The Evidence from the Czech Republic. International Journal of Mathematical Models and Methods in Applied Sciences, 8, 214-223.
  • 38.Karas, M., Režňáková, M., (2017). The Potential of Dynamic Indicator in Development of the Bankruptcy Prediction Models: the Case of Construction Companies. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 65(2), 640-652.
  • 39.Karas, M., Režňáková, M., (2023). A novel approach to estimating the debt capacity of European SMEs. Equilibrium. Quarterly Journal of Economics and Economic Policy, 18(2), 551-581.
  • 40.Kliestik, T., Misankova, M., Valaskova, K. and Svabova, L., (2018a). Bankruptcy Prevention: New Effort to Reflect on Legal and Social Changes. Science and Engineering Ethics, 24, 791-803.
  • 41.Kliestik, T., Valaskova, K., Lazaroiu, G., Kovacova, M. and Vrbka, J., (2020). Remaining Financially Healthy and Competitive: The Role of Financial Predictors. Journal of Competitiveness, 12(1), 74-92.
  • 42.Kliestik, T., Vrbka, J. and Rowland, Z., (2018b). Bankruptcy prediction in Visegrad group countries using multiple discriminant analysis. Equilibrium. Quarterly Journal of Economics and Economic Policy, 13(3), 569-593.
  • 43.Korol, T., Fotiadis, A. K., (2022). Implementing artificial intelligence in forecasting the risk of personal bankruptcies in Poland and Taiwan. Oeconomia Copernicana, 13(2), 407-438.
  • 44.Kostrzewska, J., Kostrzewski, M., Pawełek, K. and Gałuszka, K., (2016). The classical and Bayesian logistic regression in the research on the financial standing of enterprises after bankruptcy in Poland. 10th Professor Aleksander Zelias International Conference on Modelling and Forecasting of Socio-Economic Phenomena, Zakopane, Polska, Foundation of the Cracow University of Economics, pp. 72-81.
  • 45.Kovacova, M., Kliestik, T., Valaskova, K., Durana, P. and Juhaszova, Z., (2019b). Systematic review of variables applied in bankruptcy prediction models of Visegrad group countries. Oeconomia Copernicana, 10(4), 743-772.
  • 46.Kovacova, M., Valaskova, K., Durana P. and Kliestikova, J., (2019a). Innovation management of the bankruptcy: case study of Visegrad Group countries. Marketing and Management of Innovations, 4, 241-251.
  • 47.Kozel, R., Vilamová, Š., Prachařová, L. and Sedláková, Z., (2022). Evaluation of the functionality of bankruptcy models in mining companies. Acta Montanistica Slovaca, 27(3), 754-766.
  • 48.Kral, P., Stachova, M. and Sobisek, L., (2014). Utilization of Repeatedly Measured Financial Ratios in Corporate Financial Distress Prediction in Slovakia. 17th Applications of Mathematics and Statistics in Economics Conference, Poland, 27-31 August 2014, Wydawnictwo Uniwersytetu Ekonomicznego we Wrocławiu, pp. 156-163.
  • 49.Kristóf, T., Virág, M., (2020). A Comprehensive Review of Corporate Bankruptcy Prediction in Hungary. Journal of Risk and Financial Management, 13(2), 35.
  • 50.Kubenka, M., Slavicek, O., (2016). Relationship Between Level of Prosperity and Failure Prediction, SGEM 2016, BK 2: Political Sciences, Law, Finance, Economics and Tourism Conference Proceedings, Vol III, 3rd International Multidisciplinary Scientific Conference on Social Sciences and Arts SGEM 2016, pp. 505-511.
  • 51.Lesáková, L., Gundová, P. and Vinczeová, M., (2020). The practice of use of models predicting financial distress in Slovak companies. Journal of Eastern European and Central Asian Research (JEECAR), 7(1), 122-136.
  • 52.Linhartová, V., Halásková, M., (2022). Determinants of corruption: a panel data analysis of Visegrad countries. Equilibrium. Quarterly Journal of Economics and Economic Policy, 17(1), 51-79.
  • 53.Merton, R. C., (1974). On the pricing of corporate debt: the risk structure of interest rate. Journal of Finance, 29, 449-470.
  • 54.Michalkova, L., Kovacova, M., Cepel, M. and Belas, J., (2022), Insolvency Prediction and Corporate Bankruptcy Model in Visegrad Group Countries. Transformations in Business and Economics, 21(56A), 529-548.
  • 55.Mihalovič, M., (2016), Performance Comparison of Multiple Discriminant Analysis and Logit Models in Bankruptcy Prediction. Economics and Sociology, 9(4), 101-118.
  • 56.Mihalovič, M., (2018). Applicability of Scoring Models in Firms Default Prediction. The Case of Slovakia. Politická ekonomie, 66(6), 689-708.
  • 57.Nĕmec, D., Pavlík, M., (2016). Predicting insolvency risk of the Czech companies. In: Marian Reiff, Pavel Gežík. Proceedings of the International Scientific Conference Quantitative Methods in Economics (Multiple Criteria Decision Making XVIII). Bratislava: University of Economics, pp. 258-263.
  • 58.Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., et al. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ, 372, n71.
  • 59.Papík, M., Papíková, L., Kajanová, J., & Bečka, M. (2021, November). CatBoost: The case of bankruptcy prediction. In International Conference on Business and Technology (pp. 3-17). Cham: Springer International Publishing.
  • 60.Pavlicko, M., Durica, M. and Mazanec, J., (2021). Ensemble Model of the Financial Distress Prediction in Visegrad Group Countries. Mathematics, 9(16), 1886.
  • 61.Pawełek, B., (2019). Extreme gradient boosting method in the prediction of company bankruptcy. Statistics in Transition New Series, 20(2), 155-171 .
  • 62.Pawełek, B., Baryła, M. and Pociecha, J., (2020). Study of the classification accuracy measures for predicting corporate bankruptcy considering changes in the economic environment. Argumenta Oeconomica, 1(44), 5-17.
  • 63.Pawełek, B., Gałuszka, K., Kostrzewska, J. and Kostrzewski, M., (2017). Classification methods in the research on the financial standing of construction enterprises after bankruptcy in Poland. In Data Science: Innovative Developments in Data Analysis and Clustering (pp. 29-42). Springer International Publishing.
  • 64.Pawełek, B., Pociecha, J., (2019, September). Corporate Bankruptcy Prediction with the Use of the Logit Leaf Model. In Conference of the Section on Classification and Data Analysis of the Polish Statistical Association (pp. 129-146). Cham: Springer International Publishing.
  • 65.Pociecha, J., Pawełek, B., Baryła, M. and Augustyn, S., (2018). Classification Models as Tools of Bankruptcy Prediction - Polish Experience. In Classification,(Big) Data Analysis and Statistical Learning (pp. 163-172). Springer International Publishing.
  • 66.Podhorska, I., Vrbka, J., Lazaroiu, G. and Kovacova, M., (2020). Innovations in financial management: recursive prediction model based on decision trees. Marketing and Management of Innovations, 3, 276-292.
  • 67.Popescu, M. E., Dragotă, V., (2018). What Do Post-Communist Countries Have in Common When Predicting Financial Distress? Prague Economic Papers, 27(6), 637-653.
  • 68.Postek, Ł., Thor, M., (2020). Default Prediction Models and Their Application to Poland’s NewConnect Market. Gospodarka Narodowa. The Polish Journal of Economics, 301(1), 109-137.
  • 69.Prusak B., (2018). Review of Research into Enterprise Bankruptcy Prediction in Selected Central and Eastern European Countries. International Journal of Financial Studies, 6(3), 60.
  • 70.Prusak, B., Galiński, P., (2021). Approval of an Arrangement in the Restructuring Proceedings and the Financial Condition of Companies Listed on the Stock Exchanges in Warsaw. Is There Any Relationship? Journal of Risk and Financial Management, 14(11), 523.
  • 71.Ptak-Chmielewska, A., (2021). Bankruptcy prediction of small- and medium-sized enterprises in Poland based on the LDA and SVM methods. Statistics in Transition new series, 22(1), 179-195.
  • 72.Rosecká, N., Machek, O., (2020). Bankruptcy Models: Are Family Firms More Likely to be in the “Safe Zone”? In: Innovation Management, Entrepreneurship and Sustainability (IMES 2020), Prague: Prague University of Economics and Business.
  • 73.Rózsa, Z., Folvarčná, A., Holúbek, J. and Veselá, Z., (2023). Job crafting and sustainable work performance: A systematic literature review. Equilibrium. Quarterly Journal of Economics and Economic Policy, 18(3), 717-750.
  • 74.Rybárová, D., Majdúchová, H., Štetka, P. and Luščíková D., (2021). Reliability and Accuracy of Alternative Default Prediction Models: Evidence from Slovakia. International Journal of Financial Studies, 9(4), 65.
  • 75.Šebestová, M., (2017). Application of Neurofuzzy Approach in Predicting the Number of Bankruptcies of Legal Persons in the Czech Republic. Proceedings of the 30th International Business Information Management Association Conference, IBIMA 2017 - Vision 2020: Sustainable Economic Development, Innovation Management, and Global Growth, pp. 1166-1174.
  • 76.Sofrankova, B., Matkova, S., (2016). Analytical View of Using Prediction Models in Conditions of Accommodation Facilities in Slovakia. 3rd International Multidisciplinary Scientific Conference on Social Sciences and Arts SGEM 2016, pp. 51-58.
  • 77.Štefko, R., Horváthová, J. and Mokrišová, M., (2020). Bankruptcy Prediction with the Use of Data Envelopment Analysis: An Empirical Study of Slovak Businesses. Journal of Risk and Financial Management, 13(9), 212.
  • 78.Sterba, M., (2018). Critical Evaluation of Selected Bankruptcy Models when Applied to Czech Logistics, Proceedings of the International Scientific Conference of Business Economics, Management and Marketing 2018 (ISCOBEMM), Department of Corporate Economy Faculty of Economics and Administration Masaryk University, September 6th and 7th 2018, Prušánky-Nechory, Czech Republic, pp. 239-246.
  • 79.Svabova, L., Durica, M. and Valaskova, K., (2022). Failure prediction models for Slovak small companies. European Journal of International Management, 18(4), 617-637.
  • 80.Svabova, L., Michalkova, L., Durica, M. and Nica, E., (2020) Business Failure Prediction for Slovak Small and Medium-Sized Companies. Sustainability, 12(11), 4572.
  • 81.Tinoco, M. H., Wilson, N., (2013). Financial distress and bankruptcy prediction among listed companies using accounting, market and macroeconomic variables. International Review of Financial Analysis, 30, 394-419.
  • 82.Tomczak, S. K., (2023). General bankruptcy prediction models for the Visegrád Group. The stability over time. Operations Research and Decisions, 33(4), 171-187.
  • 83.Trujillo-Ponce, A., Medina, R., and Cardone Riportella, C. (2013). Examining what best explains corporate credit risk: accounting-based versus market-based models. Journal of Business Economics and Management, 15(2), 1-24.
  • 84.Tumpach, M., Surovičová A., Juhászová Z., Marci, A., and Kubaščíková, Z. (2020). Prediction of the Bankruptcy of Slovak Companies Using Neural Networks with SMOTE. Ekonomický časopis, 68(10), 1021 - 1039.
  • 85.Valaskova, K., Androniceanu, A-M., Zvarikova, K. and Olah, J., (2021). Bonds Between Earnings Management and Corporate Financial Stability in the Context of the Competitive Ability of Enterprises. Journal of Competitiveness, 13(4), 167-184.
  • 86.Valaskova, K., Durana, P., Adamko, P. and Jaros, J., (2020). Financial Compass for Slovak Enterprises: Modeling Economic Stability of Agricultural Entities. Journal of Risk and Financial Management, 13(5), 92.
  • 87.Valaskova, K., Gajdosikova, D. and Belas, J., (2023). Bankruptcy prediction in the post-pandemic period: A case study of Visegrad Group countries. Oeconomia Copernicana, 14(1), 253-293.
  • 88.Valaskova, K., Kliestik, T., Svabova, L. and Adamko, P., (2018). Financial Risk Measurement and Prediction Modelling for Sustainable Development of Business Entities Using Regression Analysis. Sustainability, 10(7), 2144.
  • 89.Vassalou, M., Xing, Y., (2004). Default risk in equity returns. Journal of Finance, 59, 831-868.
  • 90.Vavřina, J., Hampel, D. and Janová, J., (2013). New approaches for the financial distress classification in agribusiness. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, LXI(4), 1177-1182.
  • 91.Veganzones, D., Severin, E., (2021). Corporate failure prediction models in the twenty-first century: a review. European Business Review, 33(2), 204-226.
  • 92.Verikas, A., Kalsyte, Z., Bacauskiene, M. and Gelzinis, A., (2010). Hybrid and ensemble-based soft computing techniques in bankruptcy prediction: a survey. Soft Computing, 14(9), 995-1010.
  • 93.Virág, M., Nyitrai, T., (2014). Is there a trade-off between the predictive power and the interpretability of bankruptcy models? The case of the first Hungarian bankruptcy prediction model. Acta Oeconomica, 64(4), 419-440.
  • 94.Vochozka, M., Straková, J. and Váchal, J., (2015). Model to Predict Survival of Transportation and Shipping Companies. Naše more, 62, 19-23.
  • 95.Vochozka, M., Vrbka, J. and Suler P., (2020) Bankruptcy or Success? The Effective Prediction of a Company’s Financial Development Using LSTM. Sustainability, 12(18), 7529.
  • 96.Weiss, E., Janoskova, M., Culkova, K., Zuzik, J. and Weiss, R., (2023). Prediction of Extraction Companies’ Development. Montenegrin Journal of Economics, 19(4), 7-18.
  • 97.Welc, J. (2018). Impact of EBITDA Variability on Empirical Safety Thresholds of Indebtedness and Liquidity Ratios: The Case of Poland. In Finance and Sustainability: Proceedings from the Finance and Sustainability Conference, Wroclaw 2017 (pp. 255-264). Springer International Publishing.
  • 98.Wilson, N, Ochotnický, P. and Káčer, M., (2016). Creation and destruction in transition economies: The SME sector in Slovakia. International Small Business Journal, 34(5), 579-600.
  • 99.Zmijewski, M. E., (1984). Methodological issues related to the estimation of financial distress prediction models. Journal of Accounting Research, 22, 59-82.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-705b18df-1e5e-4911-82d4-e0a94ae397ee
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.