PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fatigue life of compacted wire ropes for applications in deep mining

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Recent months have highlighted the progressing energy crisis across Europe in connection with the severe sanctions imposed on the import of hydrocarbons and coal from Russia. This is particularly visible in Poland, where over 40% of electricity is generated from coal, while in individual households it is the primary source of heat. This situation puts the already enigmatic plans of shutting down coal mining in Poland into question. Therefore, work aimed at increasing the extraction capacity of existing shafts while maintaining the highest level of operational safety is still valid. This article concerns the issues of the fatigue life of compacted ropes used as hoist ropes in mine shafts. The discussion regarding the use of these ropes among shaft hoist users has been going on for several years. This paper presents the unique results of compacted rope fatigue tests carried out at the Central Mining Institute in Katowice. In the authors’ view, these results and their interpretation should serve to clarify several important aspects that arouse the interest of users.
Wydawca
Rocznik
Tom
Strony
95--101
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
  • Central Mining Institute in Katowice Plac Gwarków 1, 40-166 Katowice, Poland
  • AGH University of Science and Technology Department of Machinery Engineering and Transport Faculty of Mechanical Engineering and Robotics Adama Mickiewicza Ave 30, 30-059 Kraków, Poland
autor
  • Central Mining Institute in Katowice Plac Gwarków 1, 40-166 Katowice, Poland
  • AGH University of Science and Technology Department of Machinery Engineering and Transport Faculty of Mechanical Engineering and Robotics Adama Mickiewicza Ave 30, 30-059 Kraków, Poland
Bibliografia
  • [1] Appendix 4 to the Ordinance of the Minister of Energy of 23 November 2016 concerning the detailed requirements regarding the conduction of underground mining plant operations. Dz. U. 2017, item 1118.
  • [2] A. Carbogno, M. Żołnierz, S. Mateja S.: Liny o powierzchniowym styku drutów stosowane w górniczych urządzeniach transportowych. Bezpieczeństwo Pracy Urządzeń Transportowych w Górnictwie. Monografia CBiDGP Sp. z o.o., Lędziny 2011.
  • [3] J. Hankus: Liny wyciągowe nośne o powierzchniowym styku drutów. GIG, Katowice 2003.
  • [4] B. Kubiś: Wpływ wstępnej deformacji splotek w linach kompaktowanych na ich trwałość i parametry wytrzymałościowe (Effect of preliminary deformation of strands in compacted ropes on their durability and strength parameters). GIG, Katowice 2019, Praca doktorska w maszynopisie niepublikowana. (typescript in Polish with an abstract in English)
  • [5] A. Tytko: Liny stalowe. PWN, Warszawa 2021.
  • [6] M. Kamarudin, M.J. Jamaluddin, M.N. Tamin: Fatigue assessment of steel wire rope. AIP Conference Proceedings 2068, 2019; https://doi.org/10.1063/1.5089408.
  • [7] P. Peterka, J. Krešák, et al.: Failure analysis of hoisting steel wire rope. Engineering Failure Analysis; 45(1), pp. 96-105, 2014, https://doi.org/10.1016/j.engfailanal.2014.06.005.
  • [8] D. Zhang, C. Feng, K. Chen, et al.: Effect of Broken Wire on Bending Fatigue Characteristics of Wire Ropes. International Journal of Fatigue; 103, pp. 456-465, 2017, https://doi.org/10.1016/j.ijfatigue.2017.06.024.
  • [9] T. Huang, T. Xiahou, Y.F. Li, et al.: Assessment of wind turbine generators by fuzzy universal generating function. Eksploatacja i Niezawodnosc – Maintenance and Reliability; 23(2), pp. 308-314, 2021, https://doi.org/10.17531/ein.2021.2.10.
  • [10] Y.F. Li, H.Z. Huang, J. Mi, et al.: Reliability analysis of multistate systems with common cause failures based on Bayesian network and fuzzy probability. Annals of Operations Research, 311, pp. 195-209, 2022; https://doi.org/10.1007/s10479-019-03247-6.
  • [11] Y.F. Li, Y. Liu, T. Huang, et al.: Reliability assessment for systems suffering common cause failure based on Bayesian networks and proportional hazards model. Quality and Reliability Engineering International, 36 (7), pp. 2509-2520, 2020, https://doi.org/10.1002/qre.2713.
  • [12] J. Mi, Y.F. Li, W. Peng, et al.: Reliability analysis of complex multi-state system with common cause failure based on evidential networks. Reliability Engineering & System Safety; 174: pp. 71-81,2018, https://doi.org/10.1016/j.ress.2018.02.021.
  • [13] G. Olszyna. A. Tytko. A tool for determining the number of bends and places of accumulation of potential wear of steel ropes operating in the luffing systems of basic opencast mining machines, Min. Mach. 2022, vol. 40 issue 4, pp. 229-237. DOI: 10.32056/KOMAG2022.4.5
  • [14] U. Breim: Torque cycle fatigue of wire ropes. OIPEEC Conference, September 2007, How to get the most out of your ropes. pp. 99-106, Johannesburg, 2007.
  • [15] J.M. Teissier, I.M.L. Ridge, J.J. Evans, M. Fournier: The effect of wire break distribution on the breaking strength of a wire rope OIPEEC Conference, April 2017, Rope – Present and Futere. pp. 267-293, La Rochelle 2017
  • [16] T. Weber, K.H. Wehking: Bending fatigue of wire ropes under torsion. OIPEEC Conference, March 2015, Challenging rope applications. pp. 251-268, Stuttgart 2015
  • [17] M. Mahmud, S. Abdullah S.M. Yunoh, A. Ariffin, Z. Nopiah: Damaging fatigue cycles determination for random service loadings using mixed Weibull analysis. International Journal of Automotive and Mechanical Engineering. Volume 13, Issue 3 pp. 3628-3641, December 2016. https://doi.org/10.15282/ijame.13.3.2016.8.0298
  • [18] M. Kamal, M.M. Rahman: Fatigue life estimation models: a state of the art. International Journal of Automotive and Mechanical Engineering. Volume 9, pp. 1599-1608, January-June 2014 http://dx.doi.org/10.15282/ijame.9.2014.10.0132
  • [19] J. Winkler, C.T. Georgakis, G Fischer: Fretting fatigue behavior of high-strength steel mono strands under bending load. International Journal of Fatigue. Volume 13, pp. 13-23, 2015 http://dx.doi.org/10.1016/j.ijfatigue.2014.08.009.
  • [20] S. Mohamed, S. Abdullah, A. Arifin, A.K. Ariffin, M.M. Padzi: Characterization of the biaxial fatigue behaviour on medium carbon steel using the strain-life approach. International Journal of Automotive and Mechanical Engineering. Volume 13, pp. 3262-3277, 2016. https://doi.org/10.15282/ijame.13.1.2016.12.0272.
  • [21] M. Kamal, M.M Rahman: Finite element-based fatigue behaviour of springs in automobile suspension. International Journal of Automotive and Mechanical Engineering. Volume 10, pp. 1910-1919, July- December 2014 http://dx.doi.org/10.15282/ijame.10.2014.8.0159
  • [22] M. Kamal, M.M. Rahman, M.S.M. Sani: Application of multibody simulation for fatigue life estimation. International Journal of Automotive and Mechanical Engineering. Volume 7, pp. 912-923, January-June 2013. http://dx.doi.org/10.15282/ijame.7.2012.9.0074
  • [23] S. Salleh, M.A. Abdullah, M.F. Abdulhamid M.N. Tamin: Methodology for reliability assessment of steel wire ropes under fretting fatigue conditions. Journal of Mechanical Engineering and Sciences. Volume 11, Issue 1, pp. 2488-2502, March 2017. https://doi.org/10.15282/jmes.11.1.2017.8.0229
  • [24] L. Lombardi, F. Clerici: An innovative method for wire rope fatigue life evaluation. OIPEEC Conference, Marz 2013, Simulating Rope Applications. pp. 115-126 Oxford 2013.
  • [25] T.L.M. Morgado, A. Sousa e Brito: A failure analysis study of a prestressed steel cable of a suspension bridge Case Stud Constr Mater, 3, pp. 40-47, 2015 https://doi.org/10.1016/j.cscm.2015.04.001
  • [26] A.G. Costello: Theory of Wire Rope, second edition, Springer, New York 1997.
  • [27] A. Hemer, L. Milović, A. Grbovic, B. Aleksic, V. Aleksic: Numerical determination and experimental validation of the fracture toughness of welded joints. Engineering Failure Analysis, Volume 107, 2020, https://doi.org/10.1016/j.eng-failanal.2019.104220.
  • [28] A. Sedmak, M. Rakin: Application of fracture mechanics in assessment of structural integrity, Monograph of the VIII International Fracture Mechanics Summer School, TMF and DIVK, Belgrade, pp. 373-386, 2004.
  • [29] D. Zhao, Y.X. Liu, X.T. Ren et al.: Fatigue life prediction of wire rope based on grey particle filter method under small sample condition. Eksploatacja i Niezawodność – Maintenance and Reliability Volume 23 no. 3 s 456-463, 2021 http://dx.doi.org/10.17531/ein.2021.3.6
  • [30] Hankus J.: Budowa i własności mechaniczne lin stalowych Wyd. II GIG, Katowice 2000r.
  • [31] J. Zhang, D. Wang, D. Song, D. Zhang, C. Zhang, D. Wang, et al.: Tribo-fatigue behaviors of steel wire rope under bending fatigue with the variable tension Wear, Volume 428-429, pp. 154-161,2019 https://doi.org/10.1016/j.wear.2019.03.004
  • [32] D. Battini, L. Solazzi, A.M. Lezzi, F. Clerici, G. Donzella: Prediction of steel wire rope fatigue life based on thermal measurements. International Journal of Mechanical Sciences. Elsevier 15 September 2020 https://doi.org/10.1016/j.ijmecsci.2020.105761
  • [33] Ch. Yoan, M. Yann, G. Bles, K. Devos, M. Keryer, M. Arhant, P. Davies: Fatigue of improved polyamide mooring ropes for floating wind turbines. Ocean Engineering. Vol. 199, Elsevier, 1 March 2020 https://doi.org/10.1016/j.oceaneng.2020.107011
  • [34] M.H. Lafitte, A.R. Bunsell: The fatigue behaviour of Kevlar-29 fibres. J. Mater. Sci. 17 (8), pp. 2391-2397, 1982.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu „Społeczna odpowiedzialność nauki” - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7059a176-11c3-42eb-bbd5-5c7d52546082
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.