PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Exploring Cacao Husk Waste – Surface Modification, Characterization, and its Potential for Removing Phosphate and Nitrate Ions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Environmental pollution by phosphate and nitrate ions has become a serious problem. The innovation of cacao husk as an adsorbent and sustainable material can be a solution for absorbing phosphate and nitrate ions. Cocoa husk (CH) derived from the matured cocoa fruit’s remaining pod material that often discarded as waste. The aim of this research is to develop an environmentally friendly and economical cacao husk (CH) based material for the absorption of phosphate and nitrate ions from aqueous solutions. CH surface modification is made by reacting the cationic polymer 2-[(methacryloyloxy)ethyl]trimethylammonium (META), into CH treatment (CH-T). Successful surface modification of CH-T with cationic polymers was confirmed to improve the surface properties for the removal of phosphate and nitrate ions. The surface charge morphology, structure, pore distribution and stability of the modified CH-T were investigated by Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR), Branueur-Emmet-Teller (BET) and elemental analysis. 0.3 grams of CH-T modified with 75% cationic polymer with stirring at 70 rpm for 180 minutes at 50°C was reported as the best modification condition. Removal efficiencies of phosphate and nitrate ions increased after adding quaternary ammonium to CH-T to 96% and 93.4%, respectively. These results indicate that CH modification has prospective as a low-cost catalyst for wastewater treatment.
Rocznik
Strony
282--292
Opis fizyczny
Bibliogr. 47 poz., rys., tab.
Twórcy
autor
  • Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Ahmad Dahlan, Tamanan, Bantul, D.I. Yogyakarta, 55191, Indonesia
  • Department of Agro-industrial Technology, Faculty of Science and Technology, Universitas Darussalam Gontor, Ponorogo 63471, Indonesia
  • Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Ahmad Dahlan, Tamanan, Bantul, D.I. Yogyakarta, 55191, Indonesia
autor
  • Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Ahmad Dahlan, Tamanan, Bantul, D.I. Yogyakarta, 55191, Indonesia
Bibliografia
  • 1. Cho E.J., Thi L., Trinh P., Song Y., Lee Y.G., Bae H. 2019. Bioconversion of biomass waste into high value chemicals Department of Bioenergy Science and Technology , Chonnam National University , Gwangju 500-, Bioresour. Technol., 122386. doi: 10.1016/j.biortech.2019.122386.
  • 2. Balentić D.Š. and J.P., Ačkar D., Jokić S., Jozinović A., Babić J., Miličević B. Pavlović N. 2018. Cocoa shell : A by-product with great potential for wide application. Molecules, 23(6), 1–14. doi: 10.3390/molecules23061404.
  • 3. Nguyen T.A.H. et al., 2014. A comparative study on different metal loaded soybean milk by-product ‘okara’ for biosorption of phosphorus from aqueous solution. Bioresour. Technol., 169, 291–298. doi: 10.1016/j.biortech.2014.06.075.
  • 4. Jamilatun S., Amelia S., Pitoyo J., Ma’Arif A., Mufandi I. 2023. Preparation and Characteristics of Effective Biochar Derived from Sugarcane Bagasse as Adsorbent. Int. J. Renew. Energy Res., 13(2), 673–680. doi: 10.20508/ijrer.v13i2.13719.g8737.
  • 5. Uddin M.K. 2016. A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chem. Eng. J. doi: 10.1016/j.cej.2016.09.029.
  • 6. Bazrafshan E., Sobhanikia M., Mostafapour F.K., Kamani H., Balarak D. 2017. Chromium biosorption from aqueous environments by mucilaginous seeds of Cydonia oblonga : Kinetic and thermodynamic studies. Glob. NEST, 19(2), 269–277.
  • 7. Awad A.M. et al. 2019 Adsorption of Organic Pollutants by Natural and Modified Clays : A Comprehensive Review. Sep. Purif. Technol., 115719. doi: 10.1016/j.seppur.2019.115719.
  • 8. Lu Y., Fan L., Yang L., Huang F., Ouyang X. 2019. PEI-modified core-shell/bead-likeamino silica enhanced poly (vinyl alcohol)/chitosan for diclofenac sodium efficient adsorption. Carbohydr. Polym., 115459. doi: 10.1016/j.carbpol.2019.115459.
  • 9. Zhang G., Li S., Shuang C., Mu Y., Li A., Tan L. 2020. The effect of incorporating inorganic materials into quaternized polyacrylic polymer on its mechanical strength and adsorption behaviour for ibuprofen removal. Sci. Rep., 10, 1–11. doi: 10.1038/s41598-020-62153-1.
  • 10. G.M.E. Abdelazeem S. Eltaweil, Hala M. Elshishini, Zekry F. Ghatass 2020. Ultra-high Adsorption Capacity and Selective Removal of Congo red over Aminated Graphene Oxide Modified Mn-Doped UiO-66 MOF. Powder Technol. doi: 10.1016/j.powtec.2020.10.084.
  • 11. Eltaweil A.S., El-tawil A.M., El-monaem E.M.A., El-subruiti G.M. 2021. Zero Valent Iron Nanoparticle-Loaded Nanobentonite Intercalated Carboxymethyl Chitosan for E ffi cient Removal of Both Anionic and Cationic Dyes. ACS Omega, 6, 6348–6360. doi: 10.1021/acsomega.0c06251.
  • 12. Rangabhashiyam S., Vijayaraghavan K., Jawad A.H., Singh P. 2021. Environmental Technology & Innovation Sustainable approach of batch and continuous biosorptive systems for praseodymium and thulium ions removal in mono and binary aqueous solutions. Environ. Technol. Innov., 23, 101581. doi: 10.1016/j.eti.2021.101581.
  • 13. Rangabhashiyam S., Balasubramanian S.S.P. 2019. Assessment of hexavalent chromium biosorption using biodiesel extracted seeds of Jatropha sp ., Ricinus sp . and Pongamia sp . Int. J. Environ. Sci. Technol., 16(10), 5707–5724. doi: 10.1007/s13762-018-1951-0.
  • 14. Saud A. et al. 2021. Journal of Environmental Chemical Engineering Statistical modeling and mechanistic pathway for methylene blue dye removal by high surface area and mesoporous grass-based activated carbon using K 2 CO 3 activator. J. Environ. Chem. Eng., vol. 9(4), 105530, doi: 10.1016/j.jece.2021.105530.
  • 15. Eletta O.A.A., Tijani I.O., Ighalo J.O. 2020. Adsorption of Pb ( II ) and Phenol from Wastewater Using Silver Nitrate Modified Activated Carbon from Groundnut ( Arachis hypogaea L .) Shells. west Indian J. Eng., 43(1), 5728.
  • 16. Rouzitalab Z., Mohammady D., Jafarinejad S. 2020. Chemosphere Lignocellulose-based adsorbents : A spotlight review of the effective parameters on carbon dioxide capture process. Chemosphere, 246, 125756. doi: 10.1016/j.chemosphere.2019.125756.
  • 17. Dai Y. et al. 2018. Utilizations of agricultural waste as adsorbent for the removal of contaminants: A review. Chemosphere, 6. doi: 10.1016/j.chemosphere.2018.06.179.
  • 18. Elsamadony M., Fujii M., Miura T., Watanabe T. 2021. Possible transmission of viruses from contaminated human feces and sewage: Implications for SARS-CoV-2. Sci. Total Environ., 755. doi: 10.1016/j.scitotenv.2020.142575.
  • 19. Siti Jamilatun I.M., Martomo Setyawan, Lutfiatul Janah, Rifka Alfiyani. 2021. Activation of Coconut Shell Charcoal and Application for Bleaching Waste Cooking. Chem. J. Tek. Kim., 8(1), 56–65.
  • 20. Elif Cerrahoglu Kaçakgil D.B., 2019. Performance assessment and statistical modeling of modification and adsorptive properties of a lignocellulosic waste modified using reagent assisted mechanochemical process as a low-cost and high-performance method, Sustain. Chem. Pharm., 15(December 2019, 1–16, 2020. doi: 10.1016/j.scp.2020.100226.
  • 21. Kadhom M., Albayati N., Alalwan H., Al-furaiji M. 2020. Removal of dyes by agricultural waste. Sustain. Chem. Pharm., 16(January), 100259. doi: 10.1016/j.scp.2020.100259.
  • 22. Bhattacharjee C., Dutta S., Saxena V.K. 2020. A review on biosorptive removal of dyes and heavy metals from wastewater using watermelon rind as biosorbent,” Enviromental Adv., 2(September).
  • 23. Zhou C., Wang Y. 2020. Recent progress in the conversion of biomass wastes into functional materials for value-added applications,” Sci. Technol. Adv. Mater., 21(1), 787–804. doi: 10.1080/14686996.2020.1848213.
  • 24. I.C. Statistics, Indonesia Cacao Statistics 2020. Badan Pusat Statistik / BPS – Statistics Indonesia, 2020.
  • 25. Tsai W., Hsu C., Lin Y., Tsai C., Chen W. 2020. Enhancing the Pore Properties and Adsorption Performance of Cocoa Pod Husk (CPH) -Derived Biochars via Post-Acid Treatment. Processes, 8(144), 1–14. doi: 10.3390/pr8020144.
  • 26. Adjin-tetteh M., Asiedu N., Dodoo-arhin D., Karam A., Nana P. 2018. Industrial Crops & Products Thermochemical conversion and characterization of cocoa pod husks a potential agricultural waste from Ghana. Ind. Crop. Prod., no. February, 0–1. doi: 10.1016/j.indcrop.2018.02.060.
  • 27. Kilama G., Lating P.O., Byaruhanga J., Biira S. 2019. Quantification and characterization of cocoa pod husks for electricity generation in Uganda. Energy, Sustain. Soc., 9(22), 1–11,
  • 28. F. Lu et al., 2018. Valorisation strategies for cocoa pod husk and its fractions. Curr. Opin. Green Sustain. Chem. doi: 10.1016/j.cogsc.2018.07.007.
  • 29. Muñoz-Almagro N., Valadez-Carmona L., Mendiola J.A., Ibáñez E., Villamiel M. 2019. Structural characterisation of pectin obtained from cacao pod husk. Comparison of conventional and subcritical water extraction. Carbohydr. Polym., 217(January), 69–78. doi: 10.1016/j.carbpol.2019.04.040.
  • 30. Campos-vega R., Nieto-figueroa K.H., Oomah B.D. 2018. Cocoa (Theobroma cacao L.) pod husk: renewable source of bioactive compounds. Trends Food Sci. Technol. doi: 10.1016/j.tifs.2018.09.022.
  • 31. Soares Mateus A.R. et al. 2023. By-products of dates, cherries, plums and artichokes: A source of valuable bioactive compounds. Trends Food Sci. Technol., 131(November 2022), 220–243. doi: 10.1016/j.tifs.2022.12.004.
  • 32. M.C.R. de A. Veloso et al. 2020. Potential destination of Brazilian cocoa agro-industrial wastes for production of materials with high added value. Waste Manag., 118, 36–44. doi: 10.1016/j.wasman.2020.08.019.
  • 33. Rahayu A., Jamilatun S., Fajri J.A., Lim L.W. 2021 Characterization of Organic Polymer Monolith Columns Containing Ammonium Quarternary As Initial Study For Capillary Chromatography. Elkawnie, 7(1), 119. doi: 10.22373/ekw.v7i1.8764.
  • 34. Ribas M.C. et al. 2014. Comparison of a homemade cocoa shell activated carbon with commercial activated carbon for the removal of reactive violet 5 dye from aqueous solutions. Chem. Eng. J., 248, 315–326. doi: 10.1016/j.cej.2014.03.054.
  • 35. Pua F.L., Sajab M.S., Chia C.H., Zakaria S., Rahman I.A., Salit M.S. 2013. Alkaline-treated cocoa pod husk as adsorbent for removing methylene blue from aqueous solutions. J. Environ. Chem. Eng., 1(3), 460–465. doi: 10.1016/j.jece.2013.06.012.
  • 36. Brožová V.K. & J.Ž.L., Křivčík J., Neděla D. 2015. The influence of activation of heterogeneous ion-exchange membranes on their electrochemical properties. Desalin. Water Treat., 58(November), 3228–3232. doi: 10.1080/19443994.2014.980975.
  • 37. Fotsing P. N.et al. 2020. Cocoa shell with improved nitrate and Cr ( VI ). RSC Adv., 10, 20009–20019. doi: 10.1039/d0ra03027a.
  • 38. Vieillard J. et al. 2018 Cocoa shell-deriving hydrochar modi fi ed through aminosilane grafting and cobalt particle dispersion as potential carbon dioxide adsorbent. Chem. Eng. J., 342(November 2017), 420–428. doi: 10.1016/j.cej.2018.02.084.
  • 39. Balqis N. et al. 2022. Facile synthesis of polyethylenimine-modified sugarcane bagasse adsorbent for removal of anionic dye in aqueous solution. Sci. African, 16, e01135. doi: 10.1016/j.sciaf.2022.e01135.
  • 40. Rodriguez-Arellano G., Barajas-fern J., Garc R., Mercedes L., Lara-rivera A.H., Garc P. 2021. “Evaluation of Cocoa Beans Shell Powder as a Bioadsorbent of Congo Red Dye Aqueous Solutions. Materials (Basel)., 14, 1–14. doi: https://doi.org/10.3390/ ma14112763.
  • 41. Cho D. et al. 2011. Adsorption of nitrate and Cr ( VI ) by cationic polymer-modified granular activated carbon. Chem. Eng. J., 175, 298–305. doi: 10.1016/j.cej.2011.09.108.
  • 42. Sarkar S. et al. 2021. Sorptive removal of malachite green from aqueous solution by magnetite/coir pith supported sodium alginate beads: Kinetics, isotherms, thermodynamics and parametric optimization. Environ. Technol. Innov., 24(August). doi: 10.1016/j.eti.2021.101818.
  • 43. Li J. et al. 2022. Highly Efficient Removal of Nitrate and Phosphate to Control Eutrophication by the Dielectrophoresis-Assisted Adsorption Method. Int. J. Enviromental Res. Public Heal., 19, 1–11.
  • 44. Zhang Y., Tang Z., Liu S., Xu H., Song Z. 2018. Study on adsorption of phenol from aqueous media using biochar of Chinese herb residue. IOP Conf. Ser. Mater. Sci. Eng., 394(2). doi: 10.1088/1757-899X/394/2/022044.
  • 45. Qu W. et al. 2022. Influence of Temperature on Denitrification and Microbial Community Structure and Diversity : A Laboratory Study on Nitrate Removal from Groundwater. Water (Switzerland), 14(436), 1–15.
  • 46. Zhang Y., Li R. 2021. Effect of Reaction Temperature on Adsorption Efficiency using Computer Mathematical Statistics Visible Spectorphotometer. J. Phys. Conf. Ser., 2083(3). doi: 10.1088/1742-6596/2083/3/032072.
  • 47. Gorzin F., Bahri Rasht Abadi M.M. 2018. Adsorption of Cr(VI) from aqueous solution by adsorbent prepared from paper mill sludge: Kinetics and thermodynamics studies. Adsorpt. Sci. Technol., 36(1–2), 149–169. doi: 10.1177/0263617416686976.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-70586852-329b-43f5-a400-909495f47790
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.