PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Detailed evaluation and analysis of vision-based online traffic parameters estimation approach using low resolution web cameras

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we give an overview and a detail analysis of our approach for vision-based real-time traffic parameters estimation using low-resolution web cameras. Traffic parameters estimation approach mainly includes three major steps, (1) stable background estimation, (2) vehicle detection, mean speed and traffic flow estimation, and (3) traffic scene classification into three states (normal and congested). The background image is estimated and updated in realtime by novel background estimation algorithm based on the median of First-in-First-Out (FIFO) buffer of rectified traffic images. Vehicles are detected by background subtraction followed by post-processing steps. By exploiting the domain knowledge of real-world traffic flow patterns, mean speed and traffic flow can be estimated reliably and accurately. Naive Bayes classifier with statistical features is used for traffic scene classification. The traffic parameter estimation approach is tested and evaluated at the German Aerospace Center’s (DLR) urban road research laboratory in Berlin for 24 hours of live streaming data from web-cameras with frames per second 1, 5 and 10. Image resolution is 348 x 259 and JPEG compression is 50%. Processed traffic data is cross-checked with synchronized induction loop data. Detailed evaluation and analysis shows high accuracy and robustness of traffic parameters estimation approach using low-resolution web-cameras under challenging traffic conditions.
Rocznik
Strony
9--13
Opis fizyczny
Bibliogr. 10 poz.
Twórcy
autor
  • German Aerospace Center (DLR), Institute of Optical Sensor Systems, Information Processing for Optical Systems, Rutherfordstraße 2, 12489 Berlin, Germany
  • German Aerospace Center (DLR), Institute of Transportation Systems, Rutherfordstraße 2, 12489 Berlin, Germany
autor
  • German Aerospace Center (DLR), Institute of Optical Sensor Systems, Information Processing for Optical Systems, Rutherfordstraße 2, 12489 Berlin, Germany
autor
  • German Aerospace Center (DLR), Institute of Transportation Systems, Rutherfordstraße 2, 12489 Berlin, Germany
Bibliografia
  • [1] Cho Y., Rice J.: Estimating velocity fields on a freeway from lowresolution videos, IEEE Transactions on Intelligent Transportation Systems, vol. 7, no. 4 (2006)
  • [2] Schoepflin T. Daily D.: A correlation technique for estimating traffic speed from cameras, TRB-03-3414 (2003)
  • [3] Malinovskiy Y., Wu Y., Wang Y.: Video-Based Vehicle Detection and Tracking Using Spatiotemporal Maps, Transportation Research Record: Journal of the Transportation Research Board, vol. 2121 (2009)
  • [4] Duda R.O., Hart P.E., Stork D.G.: Patern Classification, 2nd ed. Hoboken, NJ: Wiley (2001)
  • [5] Brut zer S., Hoferlin B., Heidemann G.: Evaluation of Background Subtraction Techniques for Video Surveillance, IEEE conference on Computer Vision and Pattern Recognition (2011)
  • [6] Sen-Ching C., Chandrika K.: Robust techniques for background subtraction in urban traffic video, Visual communications and image processing, Proceedings of the SPIE, vol 5308 (2004)
  • [7] Goyette N., et. al.: Changedetection.net: A new change detection benchmark dataset, in Proc. IEEE Workshop on Change Detection (CDW’12) at CVPR’12, Providence, RI, 16-21 Jun 2012 (2012)
  • [8] Xiokun L., Porikli F.M.: A hidden Markov model framework for traffic event detection using video features, Image Processing ICIP, Vol 5 (2004)
  • [9] Daily D., Cathey F.: The Automated use of un-calibrated CCTV cameras as quantitative speed sensors phase 3”, Final report T269 (2006)
  • [10] Ali M., et. al.: Real-time traffic monitoring using low-resolution web-cameras, 19th ITS World Congress (2012)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7057324b-25b0-4d99-8db5-5c9c107524d6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.