PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Optimization of PHBV-hemp Fiber Biocomposite Manufacturing Process on the Selected Example

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work, a modern biocomposite on the base of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) matrix commonly known as PHBV was produced in the extrusion process, containing 30% by weight of hemp fibers. The use of the above-mentioned filler allowed to reduce the producing costs of the composite material compared to pure PHBV, improving, among others, some mechanical properties of products made of this biocomposite while maintaining full biodegradation. The obtained biocomposite can be successfully used for the production of injection molded products, but its processing properties are not yet fully known and consequently it is difficult to obtain the optimal performance properties of the products. As part of this study, the process of optimization of the production process of products from the PHBV-hemp fiber biocomposite was carried out on the example of samples intended for testing in the uniaxial tensile test. By using orthogonal planes, widely used in optimization process, the required number of injection molding tests was reduced. Input data values were determined by the factorial planning method that is commonly used in designing experiments. The calculations were carried out in the Minitab 18 software. Six controlling factors were used in the analyzes, each of which was subject to changes on three levels. When selecting the range of controlling factors, it was initially assumed that for all assumed levels of variability it must be possible to fill the mold cavity completely. The orthogonal plan of the L27 type was used in the research. For the purposes of the method, an orthogonal table was built containing 27 combinations of parameters subject to optimization. Optimization was undertaken for two main criteria: shrinkage of the ,,dog-bone” samples (primary and secondary volumetric shrinkage), mechanical properties (Young's modulus, tensile strength, elongation at break). By means of Taguchi method, a significant improvement of some product mechanical properties made of biocomposite was noted and the effective reduction of the processing shrinkage was observed.
Słowa kluczowe
Twórcy
  • Department of Materials Forming and Processing, Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, Al. Powstańców Warszawy 8, 35-959 Rzeszow, Poland
  • Department of Materials Forming and Processing, Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, Al. Powstańców Warszawy 8, 35-959 Rzeszow, Poland
autor
  • Department of Materials Forming and Processing, Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, Al. Powstańców Warszawy 8, 35-959 Rzeszow, Poland
Bibliografia
  • 1. Bergman C.A., McEwen E., Miller R. Experimental archery: projectile velocities and comparison of bow performances. Antiquity, 62, 1988, 658-670.
  • 2. Bergman C.A., McEwen E. Sinew-reinforced and composite bows. Projectile Technology. Springer, 1997.
  • 3. Binici H., Aksogan O., Shah T. Investigation of fibre reinforced mud brick as a building material. Construction and Building Materials, 19, 2005, 313-318.
  • 4. Hacke M. Weighted silk: history, analysis and conservation. Studies in Conservation, 53, 2008, 3-15.
  • 5. Mohanty A.K., Misra M., Drzal L.T. Sustainable bio-composites from renewable resources: opportunities and challenges in the green materials world. Journal of Polymers and the Environment, 10, 2002, 19-26.
  • 6. Satyanarayana K.G., Ramos L.P., Wypych F. Development of new materials based on agro and industrial wastes towards ecofriendly society. Biotechnology in energy management, 2, 2005, 583-624.
  • 7. Wool R.P., Khot S.N. Bio-based resins and natural fibers. Materials Park, ASM Interna-tional, 2001.
  • 8. Scheirs J.: Polymer recycling: science, technology and applications. John Wiley & Sons, 1998.
  • 9. Wool R.P., Khot S.N., LaScala J.J., Bunker S.P., Lu J., Thielemans W., Can E., Morye S.S., Williams G.I. Affordable composites and plastics from renewable resources: Part II: Manufacture of composites. Advancing Sustainability through Green Chemistry and Engineering, 14, 2002, 205-224.
  • 10. Wambua P., Ivens J., Verpoest I. Natural fibres: can they replace glass in fibre reinforced plastics?. Composites science and technology, 63, 2003, 1259-1264.
  • 11. Mohanty A.K., Misra M.A., Hinrichsen G. Biofibres, biodegradable polymers and bio-composites: an overview. Macromolecular materials and Engineering, 276, 2000, 1-24.
  • 12. John M.J., Thomas S. Biofibres and biocomposites. Carbohydrate polymers, 71, 2008, 343-364.
  • 13. Vogel R., Tändler B., Voigt D., Jehnichen D., Häußler L., Peitzsch L., Brünig H. Melt spinning of bacterial aliphatic polyester using reactive extrusion for improvement of crystallization. Macromolecular bioscience, 7, 2007, 820-828.
  • 14. Arakawa K., Yokohara T., Yamaguchi M.: Enhancement of melt elasticity for poly (3-hydroxybutyrate-co-3-hydroxyvalerate) by addition of weak gel. Journal of applied polymer science, 107, 2008, 1320-1324.
  • 15. Blackburn R.S.: Biodegradable and Sustainable Fibres, 1st edition. Woodhead Publishing Limited, 2005.
  • 16. Vogel R., Tändler B., Häussler L., Jehnichen D., Brünig H. Melt Spinning of Poly (3-hydroxybutyrate) Fibers for Tissue Engineering Using α-Cyclodextrin/Polymer Inclusion Complexes as the Nucleation Agent. Macromolecular bioscience, 6, 2006, 730-736.
  • 17. Bledzki A.K., Jaszkiewicz A. Mechanical performance of biocomposites based on PLA and PHBV reinforced with natural fibres–A comparative study to PP. Composites science and technology, 70, 2010, 1687-1696.
  • 18. Chen G.X., Hao G.J., Guo, T.Y., Song M.D., Zhang B.H. Structure and mechanical proper-ties of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)/clay nanocomposites. Journal of materials science letters, 21, 2002, 1587-1589.
  • 19. Mohanty A.K., Misra M.A., Hinrichsen G. Biofibres, biodegradable polymers and bio-composites:an overview. Macromolecular materials and Engineering, 276, 2000, 1-24.
  • 20. Holbery J., Houston D. Natural fiber-reinforced polymer composites in automotive applications. Jom, 58, 2006, 80-86.
  • 21. Malkapuram R., Kumar V., Negi Y.S. Recent development in natural fiber reinforced polypropylene composites. Journal of Reinforced Plastics and Composites, 28, 2009, 1169-1189.
  • 22. Li X., Tabil L.G., Panigrahi S., Crerar W.J. The influence of fiber content on properties of injection molded flax fiber-HDPE biocomposites. 2006 ASAE Annual Meeting American Society of Agricultural and Biological Engineer, 2006, 1-10.
  • 23. Ahmad I., Baharum A., Abdullah I. Effect of extrusion rate and fiber loading on mechanical properties of Twaron fiber-thermoplastic natural rubber (TPNR) composites. Journal of reinforced plastics and composites, 25, 2006, 957-965.
  • 24. Kuciel S., Liber A. Ocena skuteczności wzmacniania polietylenów mączką drzewną. Polimery, 50, 2005, 436-440.
  • 25. Kuciel S., Mazur K., Jakubowska P. Novel biorenewable composites based on poly (3-hydroxybutyrate-co-3-hydroxyvalerate) with natural fillers. Journal of Polymers and the Environment, 27, 2019, 803-815.
  • 26. Guo Y., Wang L., Chen Y., Luo P., Chen T. Properties of luffa fiber reinforced phbv biodegradable composites. Polymers, 11, 2019, 1-16.
  • 27. Batista K.C., Silva D.A.K., Coelho L.A.F., Pezzin S.H., Pezzin A.P.T. Soil biodegradation of PHBV/ peach palm particles biocomposites. Journal of Polymers and the Environment, 18, 2010, 346-354.
  • 28. Lammi S., Gastaldi E., Gaubiac F., AngellierCoussy H. How olive pomace can be valorized as fillers to tune the biodegradation of PHBV based composites. Polymer Degradation and Stability, 166, 2019, 325-333.
  • 29. Luzier, W.D. Materials derived from biomass/biodegradable materials. Proceedings of the National Academy of Sciences, 89, 1992, 839-842.
  • 30. Ozcelik B. Optimization of injection parameters for mechanical properties of specimens with weld line of polypropylene using Taguchi method. International Communications in Heat and Mass Transfer, 38, 2011, 1067-1072.
  • 31. Kamaruddin S., Khan Z.A., Foong S.H. Application of Taguchi method in the optimization of injection moulding parameters for manufacturing products from plastic blend. International Journal of Engineering and technology, 2, 2010, 574.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-704de37b-798c-4d30-85d6-0255f6c3786b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.