Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Introduction: The focus of this study was to determine the set-up errors so as to estimate the margin between the Clinical Target Volume (CTV) and the Planning Target Volume (PTV) and to suggest optimum margins for planning target volume (PTV) coverage in thorax cancers. Methods: In the present study data from 51 patients was incorporated. A total of 1308 portal images were examined. Set up errors were estimated by superimposing a digitally reconstructed radiograph (DRR), using an electronic portal image device (EPID) as a reference image. The Medio-Lateral (ML), Cranio-Caudal (CC), and Antero-Posterior (AP) directions were subsequently evaluated. According to the shifts obtained, systematic and random errors were computed. The van Herk formula was employed to determine the values for the clinical-to-planning target volume (CTV-PTV) margins. Results: The systematic error was found to be between 1.0 mm and 1.7 mm, 1.0 mm and 1.8 mm, and 2.1 mm and 3.1 mm along the x, y, and z axis. In the x, y, and z axis, the random error varied from 0.5 mm to 0.7 mm, 0.4 mm to 0.8 mm, and 0.7 mm to 1.7 mm, respectively. Based on the Van Herk equation, the PTV margin following our findings was estimated to be 4.7 mm, 3.3 mm, 8.8 mm for lung, 3.6 mm, 2.7 mm, and 5.7 mm for oesophagus, and 3.0 mm, 4.9 mm, and 8.6 mm for breast in the x, y, and z dimensions respectively. Conclusion: This study demonstrates that an 8.8 mm extension of CTV to PTV margin for the lung, 5.7 mm for the oesophagus, and 8.6 mm for the breast, serving as an upper limit, is sufficient to guarantee that 90% of patients diagnosed with thoracic cancers will receive a cumulative CTV dose that is at least 95% of the prescribed dose.
Słowa kluczowe
Rocznik
Tom
Strony
146--150
Opis fizyczny
Bibliogr. 24 poz., rys., tab.
Twórcy
autor
- Department of Physics, University of Kashmir, Jammu & Kashmir, India
autor
- Chief Medical Physicist, Apollo Gleneagles Hospitals, Kolkata, India
autor
- Department of Physics, University of Kashmir, Jammu & Kashmir, India
Bibliografia
- 1. Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA A Cancer J Clinicians. 2021;71(3):209-249. doi:10.3322/caac.21660
- 2. Chauhan R, Trivedi V, Rani R, Singh U. A Study of Head and Neck Cancer Patients with Reference to Tobacco Use, Gender, and Subsite Distribution. South Asian J Cancer. 2022;11(01):046-051. doi:10.1055/s-0041-1740601
- 3. Chakraborty D, Rangamani S, Kulothungan V, et al. Trends in incidence of Ewing sarcoma of bone in India – Evidence from the National Cancer Registry Programme (1982–2011). Journal of Bone Oncology. 2018;12:49-53. doi:10.1016/j.jbo.2018.04.002
- 4. Cella L, Palma G. Radiation Therapy in Thoracic Tumors: Recent Trends and Current Issues. Cancers. 2022;14(11):2706. doi:10.3390/cancers14112706
- 5. Clemente S, Oliviero C, Palma G, et al. Auto- versus human-driven plan in mediastinal Hodgkin lymphoma radiation treatment. Radiat Oncol. 2018;13(1). doi:10.1186/s13014-018-1146-3
- 6. Chandra RA, Keane FK, Voncken FEM, Thomas CR Jr. Contemporary radiotherapy: present and future. The Lancet. 2021;398(10295):171-184. doi:10.1016/s0140-6736(21)00233-6
- 7. van der Merwe D, Christaki K. IAEA support to radiotherapy dosimetry. Acta Oncologica. 2020;59(5):493-494. doi:10.1080/0284186x.2020.1726457
- 8. Jones D. ICRU Report 50—Prescribing, Recording and Reporting Photon Beam Therapy. Medical Physics. 1994;21(6):833-834. doi:10.1118/1.597396
- 9. Amaoui B, Mouhssine D, Bouih N, et al. VMAT dosimetric study in rectal cancer patients. IRJMBS. 2020;5(1). doi:10.15739/irjmbs.20.001
- 10. Wilkinson JM. Geometric uncertainties in radiotherapy. BJR. 2004;77(914):86-87. doi:10.1259/bjr/25924254
- 11. van Herk M, Remeijer P, Rasch C, Lebesque JV. The probability of correct target dosage: dose-population histograms for deriving treatment margins in radiotherapy. International Journal of Radiation Oncology*Biology*Physics. 2000;47(4):1121-1135. doi:10.1016/s0360-3016(00)00518-6
- 12. Fleischmann DF, Unterrainer M, Schön R, et al. Margin reduction in radiotherapy for glioblastoma through 18F-fluoroethyltyrosine PET? – A recurrence pattern analysis. Radiotherapy and Oncology. 2020;145:49-55. doi:10.1016/j.radonc.2019.12.005
- 13. van der Bijl E, Remeijer P, Sonke JJ, van der Heide UA, Janssen T. Adaptive margins for online adaptive radiotherapy. Phys Med Biol. 2022;67(19):195016. doi:10.1088/1361-6560/ac9175
- 14. Chavaudra J, Bridier A. Définition des volumes en radiothérapie externe : rapports ICRU 50 et 62. Cancer/Radiothérapie. 2001;5(5):472-478. doi:10.1016/s1278-3218(01)00117-2
- 15. van Nunen A, van der Sangen MJC, van Boxtel M, van Haaren PMA. Cone-Beam CT-based position verification for oesophageal cancer: Evaluation of registration methods and anatomical changes during radiotherapy. Technical Innovations & Patient Support in Radiation Oncology. 2017; 3-4:30-36. doi:10.1016/j.tipsro.2017.07.002
- 16. Voncken FEM, Nakhaee S, Stam B, et al. Quantification of Esophageal Tumor Motion and Investigation of Different Image-Guided Correction Strategies. Practical Radiation Oncology. 2020;10(2):84-92. doi:10.1016/j.prro.2019.11.012
- 17. Boekhoff MR, Defize IL, Borggreve AS, et al. CTV-to-PTV margin assessment for esophageal cancer radiotherapy based on an accumulated dose analysis. Radiotherapy and Oncology. 2021;161:16-22. doi:10.1016/j.radonc.2021.05.005
- 18. Li H, Li B, Chen J, Yin Y, Yu N, Hu H. Analysis of Online Cone-beam CT Images for Non-small Cell Lung Cancer to Define an Appropriate CTV-to-PTV Margins. International Journal of Radiation Oncology*Biology*Physics. 2008;72(1):S459. doi:10.1016/j.ijrobp.2008.06.1855
- 19. Liang J, Li M, Zhang T, et al. The effect of image‐guided radiation therapy on the margin between the clinical target volume and planning target volume in lung cancer. J of Medical Radiation Sci. 2014;61(1):30-37. doi:10.1002/jmrs.42
- 20. Li Y, Ma J lu, Chen X, Tang F wen, Zhang X zhi. 4DCT and CBCT based PTV margin in Stereotactic Body Radiotherapy(SBRT) of non-small cell lung tumor adhered to chest wall or diaphragm. Radiat Oncol. 2016;11(1). doi:10.1186/s13014-016-0724-5
- 21. Feng CH, Gerry E, Chmura SJ, Hasan Y, Al-Hallaq HA. An Image-Guided Study of Setup Reproducibility of Postmastectomy Breast Cancer Patients Treated With Inverse-Planned Intensity Modulated Radiation Therapy. International Journal of Radiation Oncology*Biology*Physics. 2015;91(1):58-64. doi:10.1016/j.ijrobp.2014.09.007
- 22. Hlavka A, Vanasek J, Odrazka K, et al. Tumor bed radiotherapy in women following breast conserving surgery for breast cancer-safety margin with/without image guidance. Oncol Lett. Published online February 16, 2018. doi:10.3892/ol.2018.8083
- 23. Mouawad M, Lailey O, Poulsen P, et al. Intrafraction motion monitoring to determine PTV margins in early stage breast cancer patients receiving neoadjuvant partial breast SABR. Radiotherapy and Oncology. 2021;158:276-284. doi:10.1016/j.radonc.2021.02.021
- 24. Hurkmans CW, Remeijer P, Lebesque JV, Mijnheer BJ. Set-up verification using portal imaging; review of current clinical practice. Radiotherapy and Oncology. 2001;58(2):105-120. doi:10.1016/s0167-8140(00)00260-7
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-70442743-7a36-4d0c-99af-c4145d8b8e00
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.