Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper deals with bifurcation and/or non-bifurcation post-buckling curves of composite plates under biaxial compression. For different lay-up sequences, a coupling, i.e. extension-bending (EB) is considered. The current investigations present distinct equilibrium paths describing when they have bifurcation-type and/or non-bifurcation-type responses. The novel parameter (i.e. EB coupling imperfection) is calculated to show the amount of non-bifurcation in the equilibrium path as a quantitative parameter. For the case of non-square plates, a novel mixed-mode analysis is conducted. The effects of different characters in laminated composites such as layer arrangement, loading ratio, aspect ratio, and boundary conditions are investigated. A novel result concluded in the numerical examples where there are some possibilities to have different mode shapes in linear and non-linear buckling analysis. FEM results of ANSYS software verify the results of analytical equations.
Rocznik
Tom
Strony
art. no. e148874
Opis fizyczny
Bibliogr 34 poz., rys.
Twórcy
autor
- Department of Strength of Materials, Lodz University of Technology, Stefanowskiego 1/15, 90-537 Lodz, Poland
autor
- Department of Strength of Materials, Lodz University of Technology, Stefanowskiego 1/15, 90-537 Lodz, Poland
Bibliografia
- [1] N. Vasiraja and P. Nagaraj, “The effect of material gradient on the static and dynamic response of layered functionally graded material plate using finite element method,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 67, no. 4, pp. 827–838, 2019, doi: 10.24425/bpasts.2019.130191.
- [2] D. Van Dung and N.T. Nga, “Buckling and postbuckling nonlinear analysis of imperfect FGM plates reinforced by FGM stiffeners with temperature-dependent properties based on TSDT,” Acta Mech., vol. 227, pp. 2377–2401, 2016, doi: 10.1007/s00707-016-1637-y.
- [3] Z. Kolakowski and R.J. Mania, “Influence of the coupling matrix B on the interactive buckling of FML-FGM columns with closed cross-sections under axial compression,” Compos. Struct., vol. 173, pp. 70–77, 2017, doi: 10.1016/j.compstruct.2017.03.108.
- [4] M. Mikuśkiewicz, “Silicon nitride/carbon nanotube composites: preparation and characterization,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, no. 5, e138234, 2021, doi: 10.24425/bpasts.2021.138234.
- [5] E.A. Pieczyska, S.P. Gadaj, W.K. Nowacki, and H. Tobushi, “Thermomechanical investigations of martensitic and reverse transformations in TiNi shape memory alloy,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 52, no. 3, pp. 165–171, 2004.
- [6] K. Asemi and M. Shariyat, “Three-dimensional biaxial post-buckling analysis of heterogeneous auxetic rectangular plates on elastic foundations by new criteria,” Comput. Methods. Appl. Mech. Eng., vol. 302, pp. 1–26, 2016, doi: 10.1016/j.cma.2015.12.026.
- [7] Y.X. Hao, W. Zhang, and J. Yang, “Nonlinear oscillation of a cantilever FGM rectangular plate based on third-order plate theory and asymptotic perturbation method,” Compos. B. Eng., vol. 42, no. 3, pp. 402–413, 2011, doi: 10.1016/j.compositesb.2010.12.010.
- [8] J.J. Mao and W. Zhang, “Buckling and post-buckling analyses of functionally graded graphene reinforced piezoelectric plate subjected to electric potential and axial forces,” Compos. Struct., vol. 216, pp. 392–405, 2019, doi: 10.1016/j.compstruct.2019.02.095.
- [9] A. Wang, H. Chen, Y. Hao, and W. Zhang, “Vibration and bending behavior of functionally graded nanocomposite doubly-curved shallow shells reinforced by graphene nanoplatelets,” Results Phys., vol. 9, pp. 550–559, 2018, doi: 10.1016/j.rinp.2018.02.062.
- [10] J.J. Mao and W. Zhang, “Linear and nonlinear free and forced vibrations of graphene reinforced piezoelectric composite plate under external voltage excitation,” Compos. Struct., vol. 203, pp. 551–565, 2018, doi: 10.1016/j.compstruct.2018.06.076.
- [11] Y. Wang and W. Zhang, “On the thermal buckling and post-buckling responses of temperature-dependent graphene platelets reinforced porous nanocomposite beams,” Compos. Struct., vol. 296, pp. 115880, 2022, doi: 10.1016/j.compstruct.2022.115880.
- [12] E. Carrera, R. Azzara, E. Daneshkhah, A. Pagani, and B. Wu, “Buckling and post-buckling of anisotropic flat panels subjected to axial and shear in-plane loadings accounting for classical and refined structural and nonlinear theories,” Int. J. Nonlinear Mech., vol. 133, 103716, 2021, doi: 10.1016/j.ijnonlinmec.2021.103716.
- [13] H.R. Ovesy, S.A.M. GhannadPour and G. Morada, “Post-buckling behavior of composite laminated plates under end shortening and pressure loading, using two versions of finite strip method,” Compos. Struct., vol. 75, pp. 106–113, 2006, doi: .
- [14] Z. Kolakowski and R.J. Mania, “Dynamic response of thin FG plates with a static unsymmetrical stable postbuckling path,” Thin-Walled Struct., vol. 86, pp. 10–17, 2015, doi: 10.1016/ j.tws.2014.09.004.
- [15] A. Lal, K.R. Jagtap, and B.N. Singh, “Post buckling response of functionally graded materials plate subjected to mechanical and thermal loadings with random material properties,” Appl. Math. Model., vol. 37, no. 5, pp. 2900–2920, 2013, doi: 10.1016/j.apm.2012.06.013.
- [16] D.G. Zhang, “Thermal post-buckling and nonlinear vibration analysis of FGM beams based on physical neutral surface and high order shear deformation theory,” Meccanica, vol. 49, pp. 283–293, 2014, doi: 10.1007/s11012-013-9793-9.
- [17] H. Huang and Q. Han. “Nonlinear elastic buckling and post-buckling of axially compressed functionally graded cylindrical shells,” Int. J. Mech. Sci., vol. 51, no. 7, pp. 500–507, 2009, doi: 10.1016/j.ijmecsci.2009.05.002.
- [18] H. Huang and Q. Han, “Nonlinear dynamic buckling of functionally graded cylindrical shells subjected to time-dependent axial load,” Compos. Struct., vol. 92, no. 2, pp. 593–598, 2010, doi: 10.1016/j.compstruct.2009.09.011.
- [19] N.D. Duc and P.H. Cong. “Nonlinear postbuckling of an eccentrically stiffened thin FGM plate resting on elastic foundations in thermal environments,” Thin-Walled Struct., vol. 75, pp. 103–112, 2014, doi: 10.1016/j.tws.2013.10.015.
- [20] N.D. Duc and P.T. Thang, “Nonlinear buckling of imperfect eccentrically stiffened metal–ceramic–metal S-FGM thin circular cylindrical shells with temperature-dependent properties in thermal environments,” Int. J. Mech. Sci., vol.81, pp. 17–25, 2014, doi: 10.1016/j.ijmecsci.2014.01.016.
- [21] N.D. Duc, N.D. Tuan, T.Q. Quan, N.V. Quyen, and T.V. Anh, “Nonlinear mechanical, thermal and thermo-mechanical post-buckling of imperfect eccentrically stiffened thin FGM cylindrical panels on elastic foundations,” Thin-Walled Struct., vol. 96, pp. 155–168, 2015, doi: 10.1016/j.tws.2015.08.005.
- [22] D.H. Bich and H. Van Tung, “Non-linear axisymmetric response of functionally graded shallow spherical shells under uniform external pressure including temperature effects,” Int. J. Nonlinear Mech., vol. 46, no. 9, pp. 1195–1204, 2011, doi: 10.1016/j.ijnonlinmec.2011.05.015.
- [23] A.H. Sofiyev, A.M. Najafov and N. Kuruoğlu, “The effect of non-homogeneity on the non-linear buckling behavior of laminated orthotropic conical shells,” Compos. B. Eng., vol. 43, no. 3, pp. 1196–1206, 2012, doi: 10.1016/j.compositesb.2011.10.010.
- [24] M. Bohlooly, and K. Malekzadeh Fard, “Buckling and postbuckling of concentrically stiffened piezo-composite plates on elastic foundations,” J. Appl. Comput. Mech., vol. 5, no. 1, pp. 128–140, 2019, doi: 10.22055/JACM.2018.25539.1277.
- [25] K. Foroutan and L. Dai, “Static and dynamic thermal post-buckling analysis of imperfect sigmoid FG cylindrical shells resting on a non-uniform elastic foundation,” Eur. J. Mech. A Solids, vol. 97, 104770, 2023, doi: 10.1016/j.euromechsol.2022.104770.
- [26] S. Zhu, Z. Tong, J. Sun, Q. Li, Z. Zhou, and X. Xu, “Electro-thermo-mechanical post-buckling of piezoelectric functionally graded cylindrical shells,” Appl. Math. Model., vol. 98, pp. 309–322, 2021, doi: 10.1016/j.apm.2021.05.011.
- [27] R.M. Jones, Mechanics of composite materials. CRC press, 2018.
- [28] M. Bohlooly and B. Mirzavand, “Postbuckling and deflection response of imperfect piezo-composite plates resting on elastic foundations under in-plane and lateral compression and electro-thermal loading,” Mech. Adv. Mater. Struct., vol. 25, no. 3, pp. 192–201, 2018, doi: 10.1080/15376494.2016.1255818.
- [29] M. Bohlooly, B. Mirzavand, and K. Malekzadeh Fard, “An analytical approach for postbuckling of eccentrically or concentrically stiffened composite double curved panel on nonlinear elastic foundation,” Appl. Math. Model., vol. 62, pp. 415–435, 2018, doi: 10.1016/j.apm.2018.06.008.
- [30] K. Malekzadeh Fard and M. Bohlooly, “Postbuckling of piezolaminated cylindrical shells with eccentrically/concentrically stiffeners surrounded by nonlinear elastic foundations,” Compos. Struct., vol. 171, pp. 360–369, 2017, doi: 10.1016/j.compstruct.2017.03.058.
- [31] P.R. Everall and G.W. Hunt, “Arnold tongue predictions of secondary buckling in thin elastic plates,” J. Mech. Phys. Solids, vol. 47, no. 10, pp. 2187–2206, 1999, doi: 10.1016/S0022-5096(99)00008-3.
- [32] M. Bohlooly Fotovat, T. Kubiak, and P. Perlikowski, “Mixed mode nonlinear response of rectangular plates under static and dynamic compression,” Thin-Walled Struct., vol. 184, 110542, 2023, doi: 10.1016/j.tws.2023.110542.
- [33] M. Urbaniak, J. Świniarski, P. Czapski, and T. Kubiak, “Experimental investigations of thin-walled GFRP beams subjected to pure bending,” Thin-Walled Struct., vol. 107, pp. 397–404, 2016, doi: 10.1016/j.tws.2016.06.022.
- [34] P. Czapski, “Influence of laminate code and curing process on the stability of square cross-section, composite columns – Experimental and FEM studies,” Compos. Struct., vol. 250, pp. 112564, 2020, doi: 10.1016/j.compstruct.2020.112564.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-703d64d2-2c8b-430d-8034-314c8cfe47d4