Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The dispersion analysis in a fluid filled and immersed thermo–electro elastic hollow cylinder composed of homogeneous, transversely isotropic material is studied within the frame work of linear theory of elasticity. The motions of the cylinder are formulated using the constitutive equations of a transversely isotropic piezo–thermo elastic material with a preferred material direction collinear with the longitudinal axis of the cylinder. The equations of motion of the internal and external fluids are formulated using the constitutive equations of an inviscid fluid. Displacement potentials are used to solve the equations of motion of the hollow cylinder and the fluids. The perfect–slip boundary condition is employed at the fluid–solid interface to find the frequency equation of the coupled system consisting of the cylinder, internal and external fluid. The non–dimensional frequencies obtained by the author are compared with the result of Paul and Raju [Paul, H. S., Raju, D. P, Asymptotic analysis of the modes of wave propagation in a piezoelectric solid cylinder. J. Acoust. Soc. Am. 71(2)( 1982) 255–263] which matches well and shows the exactness of the author’s method. The computed dimensionless frequency, phase velocity, attenuation, thermo mechanical coupling factor and specific loss are plotted in the form of dispersion curves for the material PZT-5A.
Czasopismo
Rocznik
Tom
Strony
209--231
Opis fizyczny
Bibliogr. 34 poz.
Twórcy
autor
- Department of Mechanical Mathematics Karunya University, Coimbatore TamilNadu, India
Bibliografia
- [1] Meeker, T. R. and Meitzler, A. H.: Guided wave propagation in elonged cylinders and plates, in: Mason, W.P. (Ed.), Physical Acoustics, Academic, New York, 1964.
- [2] Mirsky, I.: Wave propagation in transversely isotropic circular cylinders, Part I: Theory, Part II: Numerical results, Journal of Acoustical Society of America, 37, 1016-1026, 1965.
- [3] Morse, R. W.: Compressional waves along an anisotropic circular cylinder having hexagonal symmetry, Journal of Acoustical Society of America, 26, 1018-1021, 1954.
- [4] Tiersten, H. F.: Linear piezoelectric plate vibrations, Plenum, New York, 1969.
- [5] Parton, V.Z. and Kudryavtsev, B.A.: Electromagnetoelasticity. Gordon and Breach, New York,1988.
- [6] Shul’ga, N. A.: Propagation of harmonic waves in anisotropic piezoelectric cylinders. Homogeneous piezoceramic wave guides, International Journal of Applied Mechanics, 38(12), 933-953, 2002.
- [7] Rajapakse, R. K. N. D. and Zhou, Y.: Stress analysis of piezo-ceramic cylinders, Smart Material and Structures, 6, 169-177, 1997.
- [8] Wang, Q.: Axi-symmetric wave propagation in cylinder coated with a piezoelectric layer, International journal of Solids and Structures, 39, 3023-3037, 2002.
- [9] Ebenezer, D. D. and Ramesh, R.: Analysis of axially polarized piezoelectric cylinders with arbitrary boundary conditions on the at surfaces, Journal of Acoustical Society of America, 113(4), 1900-1908, 2003.
- [10] Berg, M. and Hagedorn, P. S.: Gutschmidt, on the dynamics of piezoelectric cylindrical shell, Journal of Sound and Vibration, 274, 91-109, 2004.
- [11] Botta, F. and Cerri, G.: Wave propagation in Reissner-Mindlin piezoelectric coupled cylinder with non-constant electric field through the thickness, International Journal of Solids and Structures, 44, 6201-6219, 2007.
- [12] Kim, J. O. and Lee, J. G.: Dynamic characteristics of piezoelectric cylindrical transducers with radial polarization, Journal of Sound and Vibration, 300, 241-249, 2007.
- [13] Mindlin, R. D.: On the equations of motion of piezoelectric crystals, in: Problems of continuum mechanics, SIAM, Philadelphia, 70, 282-290, 1961.
- [14] Mindlin, R. D.: Equation of high frequency vibrations of thermo-piezoelectric, crystal plates, Interactions in Elastic Solids, Springer, Wien, 1979.
- [15] Nowacki, W.: Foundations of linear piezoelectricity, in H. Parkus (Ed.), Electromagnetic Interactions in Elastic Solids, Springer, Wien, (1),1979.
- [16] Nowacki, W.: Some general theorems of thermo-piezoelectricity, Journal of Thermal Stresses, 171-182, 1978.
- [17] Chandrasekhariah, D. S.: A temperature rate dependent theory of piezoelectricity, Journal of thermal stresses, 7, 293-306, 1984.
- [18] Chandrasekhariah, D. S.: A generalized linear thermoelasticity theory of piezoelectric media, Acta Mechanica, 71, 39-49, 1988.
- [19] Yang, J. S. and Batra, R. C.: Free vibrations of a linear thermo-piezoelectric body, Journal of thermal stresses, 18, 247-262, 1995.
- [20] Sharma, J. N. and Pal, M.: Propagation of Lamb waves in a transversely isotropic piezothermoelastic plate, Journal of Sound and Vibration, 270, 587-610, 2004.
- [21] Sharma, J. N., Pal, M and Chand, D.: Three dimensional vibrational analysis of a piezothermoelastic cylindrical panel, International Journal of Engineering Science, 42, 1655-1673, 2004.
- [22] Ponnusamy, P.: Wave propagation in a generalized thermo elastic solid cylinder of arbitrary cross-section, International Journal of Solids and Structures, 44, 5336-5348, 2007.
- [23] Ponnusamy, P. and Selvamani, R.: Dispersion analysis of generalized magneto-thermoelastic waves in a transversely isotropic cylindrical panel, Journal of Thermal Stresses, 35, 1119-1142, 2012.
- [24] Sinha, K., Plona, J., Kostek, S and Chang, S.: Axisymmetric wave propagation in a uid-loaded cylindrical shell I: Theory; II Theory versus experiment, Journal of Acoustical Society of America, 92, 1132-1155, 1992.
- [25] Berliner, J. and Solecki, R.: Wave propagation in a uid-loaded, transversely isotropic cylinders, Part I Analytical Formulation; Part II Numerical results, Journal of Acoustical Society of America, 99, 1841-1853, 1996.
- [26] Selvamani, R. and Ponnusamy, P.: Wave propagation in a generalized thermo elastic plate immersed in uid, Structural Engineering and Mechanics, 46(6), 827-842, 2013.
- [27] Selvamani, R. and Ponnusamy, P.: Dynamic response of a solid bar of cardioidal cross-sections immersed in an inviscid uid, Applied Mathematics and Information Sciences, 8(6), 2909-2919, 2014.
- [28] Dayal, V.: Longitudinal waves in homogeneous anisotropic cylindrical bars immersed in fluid, Journal of Acoustical Society of America, 93, 1249-1255, 1993.
- [29] Nagy, B.: Longitudinal guided wave propagation in a transversely isotropic rod immersed in uid, Journal of Acoustical Society of America, 98(1), 454-457,1995.
- [30] Paul, H.S. and Raju, D.P.: Asymptotic analysis of the modes of wave propagation in a piezoelectric solid cylinder, Journal of Acoustical Society of America, 71(2), 255-263, 1982.
- [31] Paul, H.S.: Vibrations of circular cylindrical shells of piezo-electric silver iodide crystals, Journal of Acoustical Society of America, 40(5), 1077-1080, 1966.
- [32] Achenbach, J. D.: Wave motion in elastic solids, North-Holland: Amsterdam, 1973.
- [33] Kolsky, H.: Stress waves in solids, New York, London: Dover Press, 1935.
- [34] Berlincourt, D. A., Curran D. R and Jaffe, H.: Piezoelectric and piezomagnetic materials and their function in transducers, New York and London, Academic Press, 1964.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-703a1fd1-3f5c-4a71-b118-2de26cc06796