PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Finite element modeling for electric field and voltage distribution along the cap and pin insulators under pollution

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The knowledge of the behavior of both the electric potential and electric field is one of the main factors needed when designing an insulator. Using AutoCAD software a 2D cap and pin 1512L insulator model was created in the clean state and under pollution from one to five insulators separately making a chain of insulators for a total of 10 models. Later they are imported to COMSOL Multiphysics 5.6 software, simulations of the 1512L insulator were made to see the effect the pollution has and the differences that occur on the distribution with the addition of more insulators in the chain. The potential distribution starts to develop a pattern after a certain number of insulators in the chain while the pollution induces high value spikes in the field distribution. Finite-element-analysis for numerical simulation of the pollution effect in outdoor insulators: a review and a novel method.
Czasopismo
Rocznik
Strony
art. no. 2023201
Opis fizyczny
Bibliogr. 14 poz., rys., tab.
Twórcy
  • Laboratory of Electrical Engineering (LGE), University of M’sila, Algeria
  • Laboratory of Electrical Engineering (LGE), University of M’sila, Algeria
  • Department of Electrical Engineering, Faculty of Technology, University of M’sila, Algeria
  • Laboratory of Electrical Engineering (LGE), University of M’sila, Algeria
  • Department of Electrical Engineering, Faculty of Technology, University of M’sila, Algeria
Bibliografia
  • 1. Yang M, Yang X, Li X, Wang Z, Wang P. Design and optimization of a solar air heater with off set strip fin absorber plate. Applied Energy. 2014;113:1349-1362. https://doi.org/10.1016/j.apenergy.2013.08.091.
  • 2. Altaa D, Bilgilib E, Ertekina C, Yaldiza O. Experimental investigation of three different solar air heaters: energy and exergy analyses. Applied energy. 201: 2953-2973. https://doi.org/10.1016/j.apenergy.2010.04.016.
  • 3. Ho, Kian Tsong, Izadi, Mahdi, Ab Kadir, Mohd Zainal Abidin. EFVD along porcelain insulator using the FEM. Pertanika Journal of Science & Technology, 2017;25:189-196. http://psasir.upm.edu.my/id/eprint/55865.
  • 4. Muniraj C, Chandrasekar S. Finite element modeling for electric field and voltage distribution along the polluted polymeric insulator. Journal of Modelling and Simulation. 2012;8(4):310-320.
  • 5. M’ziou N, Benguesmia H, Rahali H. Modeling electric field and potential distribution of an model of insulator in two dimensions by the finite element method. International Journal of Energetica. 2018; 3(1):1-5. http://dx.doi.org/10.47238/ijeca.v3i1.58.
  • 6. Terrab H, Boulanouar H, Bayadi A. Flashover process analysis of non-uniformly polluted insulation surface using experimental design methodology and finite element method.Electric Power Systems Research. 2018;163(Part B):581-589. https://doi.org/10.1016/j.epsr.2017.12.016.
  • 7. Benguesmia H, M’ziou N, Chouchou A.M, Rachdi L. Experimental Study of the various pollution and simulation of potential and electric field distribution using FEMM at a high voltage insulator under alternative current. International Symposium on Computational and Experimental Investigations of Fluid and Structure Dynamics, (CEFSD2015-94). 2015;16-18:144.
  • 8. Kontargyri VT, Gonos IF, Stathopulos IA. Measurement and simulation of the electric field of high voltage suspension insulators. European Transactions on Electrical Power. 2009;19:509-517. https://doi.org/10.1002/etep.238.
  • 9. Ghiasi Z, Faghihi F, Shayegani-Akmal AA. et al. FEM analysis of electric field distribution for polymeric insulator under different configuration of non-uniform pollution. ElectrEng. 2021;103:2799-2808. https://doi.org/10.1007/s00202-021-01252-2.
  • 10. Ghiasi Z, Faghihi F, Shayegani-Akmal AA. FEM analysis of electric field distribution for polymeric insulator under different configuration of non-uniform pollution. Electrical Engineering. 2021;103:2799-2808. https://doi.org/10.1007/s00202-021-01252-2.
  • 11. Othman NA, Piah MAM, Adzis Z, Ahmad H, Ahmad NA. Simulation of voltage and electric-field distribution for contaminated glass insulator. 2013 IEEE Student Conference on Research and Development. 2013:116-120. https://doi.org/10.1109/SCOReD.2013.7002554.
  • 12. Arshad, Nekahi A, McMeekin SG, Farzaneh M. Effect of pollution severity on electric field distribution along a polymeric insulator. 2015 IEEE 11th International Conference on the Properties and Applications of Dielectric Materials (ICPADM). 2015:612-615. https://doi.org/10.1109/ICPADM.2015.7295346.
  • 13. Benguesmia H, M’ziou N, Boubakeur A. Simulation of the potential and electric field distribution on high voltage insulator using the finite element method. Diagnostyka. 2018;19(2):41-52. http://dx.doi.org/10.29354/diag/86414.
  • 14. Benguesmia H, Bakri, Khadar S, Hamrit F, M’ziou N. Experimental study of pollution and simulation on insulators using COMSOL® under AC voltage. Diagnostyka. 2019;20(3):21-29. https://doi.org/10.29354/diag/110330.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-70386dd9-e65b-4158-b656-4bb7809ad0ed
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.