PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Linear matrix inequalities control driven for non-ideal power source energy harvesting

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The dynamic model of a linear energy harvester excited by a non-ideal power source is coupled to a controller to maximum vibration adjustment. Numerical analysis is taken to evaluate the energy harvested keeping the vibration optimized for the maximum interaction to the energy source using linear matrix inequalities for control driven. The dimensionless power output, actuation power and net output power is determined. As a result, it is possible to verify that the total energy harvested via exogenous vibration using the proposed controller is increased up to 65 times when in comparison to the open loop system.
Słowa kluczowe
Rocznik
Strony
605--616
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
  • UFMT – Federal University of Mato Grosso, Mechanical Engineering Department, Rondonópolis, MT, Brazil
  • UNESP – Universidade Estadual Paulista, Mathematical Sciences Department, Ilha Solteira, SP, Brazil
  • UNESP – Universidade Estadual Paulista, Mathematical Sciences Department, Jaboticabal, SP, Brazil
Bibliografia
  • 1. Andrea C.Q., Pinto J.O.P., AssunÇão E., Teixeira M.C.M., Galotto L.J. , 2008, Optimum control H∞ of non-linear systems with fuzzy Takagi-Sugeno models (in Portuguese), Controle and Automa¸c˜ao, 19, 3
  • 2. Antwerp J.G., Braatz R.D., 2000, A tutorial on linear and bilinear matrix inequalities, Journal of Process Control, 10, 363-385
  • 3. Baek S.H., Park J., Kim D.M., Aksyuk V.A., Das R.R., Bu S.D., Felker D.A., et al., 2011, Giant piezoelectricity on Si for hyperactive MEMS, Science, 334
  • 4. Balthazar J.M., Dantas M.J.H., 2004, On local analysis of oscillations of a non-ideal and non-linear mechanical model, Meccanica, 39, 4, 313-330
  • 5. Balthazar J.M., Mook D.T., Weber H.I., Brasil R.M.L.R.F., Fenili A., Belato D., Felix P.J.L., 2003, An overview on non-ideal vibrations, Meccanica, 38, 613-621
  • 6. Cepnik C., Radler O., Rosenbaum S., Strohla T., Wallrabe U. ¨ , 2011, Effective optimization of electromagnetic energy harvesters through direct computation of the electromagnetic coupling, Sensors and Actuators, 167, 416-421
  • 7. Challa V.R., Prasad M.G., Shi Y., Fisher F.T., 2008, A vibration energy harvesting device with bidirectional resonance frequency tenability, Smart Materials and Structures, 17
  • 8. Chavarette F.R., 2012, On an optimal linear control of a chaotic non-ideal Duffing system, Advances in Mechanical Engineering, 2, 3
  • 9. Chilali M., Gahinet P., 1996, H∞ design with pole placement constrains: an LMI approach, IEEE Transactions on Automatic Control, 41, 3
  • 10. Eichhorn C., Goldschmidtboeing F., Porro Y., Woias P., 2009, A piezoelectric harvester with an integrated frequency tuning mechanism, PowerMEMS, Washington DC, USA, December 1-4
  • 11. Erturk A., Inman D., 2011, Broadband piezoelectric power generation on high-energy orbits of the bistable Duffing oscillator with electromechanical coupling, Journal of Sound and Vibration, 330, 2339-2353
  • 12. Huesgen T., Woias P., Kockmann N., 2008, Design and fabrication of MEMS thermoelectric generators with high temperature efficiency, Sensors and Actuators A, 423-429
  • 13. Kim S., Leung A., Koo C.Y., Kuhn L., Jiang W., Kim D., Kingon A.I., 2012, Leadfree (Na0.5K0.5)(Nb0.95Ta0.05)O3-BiFeO3 thin films for MEMS piezoelectric vibration energy harvesting devices, Materials Letters, 69, 24-26
  • 14. Lallart M., Guyomar D., 2010, Piezoelectric conversion and energy harvesting enhancement by initial energy injection, Applied Physics Letters, 97
  • 15. Lallart M., Inman D.J., 2010, Frequency self-tuning scheme for broadband vibration energy harvesting, Journal of Intelligent Material Systems and Structures, 21, 897-906
  • 16. Miller L.M., Halvorsen E., Dong T., Wright P.K., 2011, Modeling and experimental veri- fication of low-frequency MEMS energy harvesting from ambient vibrations, Journal of Micromechanics and Microengineering, 21, 045029, pp. 13
  • 17. Palacios J.L., Balthazar J.M., Brasil R.M.L.F.R. ´ , 2003, A short note on a nonlinear system vibrations under two non-ideal excitations, Journal of the Brazilian Society of Mechanical Sciences and Engineering, XXV, 391-395
  • 18. Peters C., Maurath D., Schock W., Mezger F., Manoli Y., 2009, A closed-loop widerange tunable mechanical resonator for energy harvesting systems, Journal of Micromechanics and Microengineering, 19, pp. 9
  • 19. Piccirillo V., Balthazar J.M., Pontes Jr. B.R., Felix J.L.P., 2008, On a nonlinear and chaotic non-ideal vibrating system with shape memory alloy (SMA), Journal Of Theoretical and Applied Mechanics, 46, 597-620
  • 20. Roundy S., Wright P.K., Rabaey J., 2003, A study of low level vibrations as a power source for wireless sensor nodes, Computer Communications, 26, 1131-1144
  • 21. Roundy S., Zhang Y., 2005, Toward self-tuning adaptive vibration-based microgenerators, Proceedings of Smart Structures, Devices and Systems, 5649, 373-384
  • 22. Souza S.L.T., Caldas I.L., Viana R.L., Balthazar J.M., 2008, control and chaos for vibroimpact and non-ideal oscillators, Journal of Theoretical and Applied Mechanics, 46, 641-664
  • 23. Tang L., Yaowen Y., Soh C.K., 2013, Broadband vibration energy harvesting techniques, [In:] Advances in Energy Harvesting Methods (Chapter Two), N. Elvin and A. Erturk (Eds.), Springer Science & Business Media, New York
  • 24. Tang X., Zuo L., 2011, Enhanced vibration energy harvesting using dual-mass systems, Journal of Sound and Vibration, 330, 5199-5209
  • 25. Tusset A.M., Balthazar J.M., Felix J.L.P., 2013, On elimination of chaotic behavior in a non-ideal portal frame structural system, using both passive and active controls, Journal of Vibration and Control, 19, 6, 803-813
  • 26. Wan Z., Kothare M.V., 2003, An efficient off-line formulation of robust model predictive control using linear matrix inequalities, Automatica, 39, 837-846
  • 27. Wang Y., Inman J.D., 2012, A survey of control strategies for simultaneous vibration suppression and energy harvesting via piezoceramics, Journal of Intelligent Material Systems and Structures, 23, 18, 2021-2037
  • 28. Wu W.-J., Chen Y.-Y., Lee B.-S., He J.-J., Peng Y.-T., 2006, Tunable resonant frequency power harvesting devices, Proceedings of Smart Structures and Materials, 6169, 55-62
  • 29. Yeager C.B., Trolier-Mckinstry S., 2012, Epitaxial Pb(Zrx,Ti1-x)O3 (0.30?x?0.63) films on (100)MgO substrates for energy harvesting applications, Journal of Applied Physics, 112
  • 30. Zhu, D., Tudor, M. J., Beeby, S. P., 2010, Strategies for increasing the operating frequency range of vibration energy harvesters: a review, Measurement Science and Technology, 21, pp. 29
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-702ff627-86e9-49d0-a4c3-f79e8f56a78f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.