PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Development o the Design of an Experimental Adsorber and Optimization of its Gas-Dynamic Parameters

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Various technologies and equipment are used to reduce greenhouse gas emissions. For example, the method of adsorption is used to capture carbon dioxide (CO2) from the smoke emissions of cement industries. In the adsorption process using zeolites, devices such as adsorbers are typically employed. Zeolites, a versatile group of aluminosilicate materials, are known for their high surface area and selective adsorption properties, making them effective for CO2 capture. The effectiveness of the adsorber depends on many factors, including its geometric dimensions and shape. Adsorbers with a central inlet flow have uneven gas distribution at the entrance to the adsorbent layer, which reduces their operational efficiency. To eliminate this disadvantage, various devices installed at the output of the adsorber inlet are usually used. Analysis of such devices shows that they do not provide maximum adsorption efficiency. To study the efficiency of zeolite operation for capturing carbon dioxide contained in the smoke gases of cement industries, the design of a laboratory adsorber is proposed featuring a cyclone and distribution device in its lower part. The cyclone prevents the adsorbent from being contaminated by drip fluid, which reduces the efficiency of the adsorption process in the gas, and the distribution device reduces the uniformity of gas distribution at the entrance to the adsorbent layer. This paper proposes a computational fluid dynamics (CFD) model and design of the distribution device, which was analyzed and modified to significantly increase the uniform distribution of gas at the entrance to the adsorbent layer. Compared with other designs of distribution devices, the proposed design is simpler and performs better under varying gas flow rates.
Twórcy
  • Department of Oil and Gas Field Machinery and Equipment, Ivano-Frankivsk National Technical University of Oil and Gas, Karpatska St. 15, Ivano-Frankivsk, 76019, Ukraine
  • Department of Manufacturing Systems, Faculty of Mechanical Engineering and Robotics, AGH University of Krakow, A. Mickiewicza 30, 30-059 Krakow, Poland
  • Department of Oil and Gas Field Machinery and Equipment, Ivano-Frankivsk National Technical University of Oil and Gas, Karpatska St. 15, Ivano-Frankivsk, 76019, Ukraine
  • Department of Oil and Gas Field Machinery and Equipment, Ivano-Frankivsk National Technical University of Oil and Gas, Karpatska St. 15, Ivano-Frankivsk, 76019, Ukraine
  • Department of Oil and Gas Field Machinery and Equipment, Ivano-Frankivsk National Technical University of Oil and Gas, Karpatska St. 15, Ivano-Frankivsk, 76019, Ukraine
  • Department of Machine Design and Maintenance, Faculty of Mechanical Engineering and Robotics, AGH University of Krakow, A. Mickiewicza 30, 30-059 Krakow, Poland
  • Departament of Mechinery Engineering and Transport, Faculty of Mechanical Engineering and Robotics, AGH University of Krakow, A. Mickiewicza 30, 30-059 Krakow, Poland
Bibliografia
  • 1. Grandhi S., Viswanadham M. Simulation of carbon dioxide capture by adsorption on activated carbon. Journal of Applied Geochemistry 2015; 17: 432–436.
  • 2. Yu C.H., Huang C.H., Tan C.S. A review of CO2 capture by absorption and adsorption. Aerosol and Air Quality Research 2012; 12. https://doi.org/10.4209/aaqr.2012.05.0132.
  • 3. Shamiri A., Shafeeyan M.S. Evaluation of adsorbent materials for carbon dioxide capture. Materialwissenschaft und Werkstofftechnik 2022; 53(11): 1392–1409. https://doi.org/10.1002/mawe.202100332.
  • 4. Chávez R.H., Guadarrama J.d.J., Klapp J. CO2 cature for atmosphere pollution reduction. In: Klapp J, Cervantes-Cota JL, Chávez Alcalá JF, editors. Towards a Cleaner Planet: Energy for the Future [Internet] Berlin, Heidelberg: Springer; 2007 [cited 2024 May 21]. 99–111. Available from: https://doi.org/10.1007/978-3-540-71345-6_8.
  • 5. Lee, S.Y., Park, S.J. A review on solid adsorbents for carbon dioxide capture. Journal of Industrial and Engineering Chemistry 2015; 23: 1–11.
  • 6. Reddy M.S.B., Ponnamma D., Sadasivuni K.K., Kumar B., Abdullah A.M. Carbon dioxide adsorption based on porous materials. RSC Advances 2021; 11: 12658–12681. https://doi.org/10.1039/D0RA10902A.
  • 7. Wahono S., Stalin J., Addai-Mensah J., Skinner W., Vinu A., Vasilev K. Physico-chemical modification of natural mordenite-clinoptilolite zeolites and their enhanced CO2 adsorption capacity. Microporous and Mesoporous Materials 2019; 294: 109871. https://doi.org/10.1016/j.micromeso.2019.109871.
  • 8. Pérez-Botella E., Valencia S., Rey F. Zeolites in adsorption processes: State of the art and future prospects. Chemical Reviews 2022; 122(24): 17647–17695. https://doi.org/10.1021/acs.chemrev.2c00140.
  • 9. Podzharskyi M.A. Theoretical Foundations of Sorption Processes: Lecture Notes. Dnipro: Publishing House of Dnipropetrovsk National University; 2007 (in Ukrainian).
  • 10. Huang H., He Z., Yuan H., Kobayashi N., Zhao D., Kubot, M., Guo H. Effect of adsorbent diameter on the performance of adsorption refrigeration. Chinese Journal of Chemical Engineering 2014; 22(5): 602–606. https://doi.org/10.1016/S1004-9541(14)60074-4.
  • 11. Verde M., Harby K., Corberán J.M. Optimization of thermal design and geometrical parameters of a flat tube-fin adsorbent bed for automobile air-conditioning. Applied Thermal Engineering 2017; 111: 489–502. https://doi.org/10.1016/j.applthermaleng.2016.09.099.
  • 12. Sosnowski M., Grabowska K., Krzywanski J., Nowak W., Sztekler K. Kalawa, W. The effect of heat exchanger geometry on adsorption chiller performance. Journal of Physics: Conference Series 2018; 1101: 012037. https://doi.org/10.1088/1742-6596/1101/1/012037.
  • 13. Kler S.C., Lavin J.T. Computer simulation of gas distribution in large shallow packed adsorbers. Gas Separation & Purification 1987; 1(1): 55–61. https://doi.org/10.1016/0950-4214(87)80009-9.
  • 14. Fleischer F., Koerner C., Mann J. Flow guiding and distributing devices on the exhaust side of stationary gas turbines. Journal of Engineering for Gas Turbines and Power 1990; 112(1): 80–85. https://doi.org/10.1115/1.2906481.
  • 15. Li Y., Si H., Wang B., Xue L., Wu X. Optimization design research of air flow distribution in vertical radial flow adsorbers. Korean Journal of Chemical Engineering 2018; 35: 835–846. https://doi.org/10.1007/s11814-017-0348-y.
  • 16. Sklepova S.V., Ivanichok N., Kolkovskyi P., Kotsyubynsky V., Boychuk V., Rachiy B., Uhryński A., Bembenek M., Ropyak L. Porous structure and fractal dimensions of activated carbon prepared from waste coffee grounds. Materials 2023; 16(18): 6127. https://doi.org/10.3390/ma16186127.
  • 17. Bembenek M., Kotsyubynsky V., Boychuk V., Rachiy B., Budzulyak I., Kowalski Ł., Ropyak L. Effect of synthesis conditions on capacitive properties of porous carbon derived from hemp bast fiber. Energies 2022; 15(22): 8761. https://doi.org/10.3390/en15228761.
  • 18. Cherniuk V.V., Ivaniv V.V., Bihun I.V., Wojtowicz J.M. Coefficient of flow rate of inlet cylindrical nozzles with lateral orthogonal inflow. In: Proceedings of CEE 2019: Lecture Notes in Civil Engineering.
  • 19. Li Q., He X., Chen Y., Lin J., Zhang Y., Chen R., Zhou X. Numerical study on effects of geometric parameters on the release characteristics of straight sudden expansion gas extinguishing nozzles. Symmetry 2021; 13: 2440. https://doi.org/10.3390/sym13122440.
  • 20. Onyshchuk O.O., Kormosh Z.O. Processes and Apparatuses of Chemical Production: Course of Lectures.
  • 21. Technology of Adsorption Gas Drying—Essays and Study Materials on um.co.ua. 2022. http://um.co.ua/2/2-6/2-66347.html (Accessed: 29.05.2024) (in Ukrainian).
  • 22. Ruthven D.M. Principles of adsorption and adsorption processes. John Wiley & Sons; 1984.
  • 23. Liu Y., Zheng X., Dai R. Numerical study of flow maldistribution and depressurization strategies in a small-scale axial adsorber. Adsorption 2014; 20: 757–768. https://doi.org/10.1007/s10450-014-9619-7.
  • 24. Yang R.T. Gas separation by adsorption processes. 1, World Scientific; 1997.
  • 25. Brunke J.C., Blesl M. Energy conservation measures for the German cement industry and their ability to compensate for rising energy-related production costs. Journal of Cleaner Production 2014; 82: 94–111. https://doi.org/10.1016/j.jclepro.2014.06.074.
  • 26. Liu X., Yuan Z., Xu Y., Jiang S. Greening cement in China: A cost-effective roadmap. Applied Energy 2017; 189: 233–244. https://doi.org/10.1016/j.apenergy.2016.12.057.
  • 27. Hamad M.A., Nasr M., Shubbar A., Al-Khafaji Z., Al Masoodi Z., Al-Hashimi O., Kot P., Alkhaddar R., Hashim K. Production of ultra-high-performance concrete with low energy consumption and carbon footprint using supplementary cementitious materials instead of silica fume: A review. Energies 2021; 14(24): 8291. https://doi.org/10.3390/en14248291.
  • 28. Aitcin P. Cements of yesterday and today: Concrete of tomorrow. Cement and Concrete Research 2000; 30: 1349–1359. https://doi.org/10.1016/S0008-8846(00)00365-3.
  • 29. Oss H.V., Padovani A.C. Cement manufacture and the environment: Part I: Chemistry and Technology. Journal of Industrial Ecology 2002; 6. https://doi.org/10.1162/108819802320971650.
  • 30. Cleary P. Axial transport in dry ball mills. Applied Mathematical Modelling 2006; 30: 1343–1355. https://doi.org/10.1016/j.apm.2006.03.018.
  • 31. Cui H., Yuan Z.G., Feng Z. Data-driven Modeling of Ball Mill Load and Cement Particle Size. In: 2018 Chinese Automation Congress (CAC) [Internet] 2018 [cited 2024 May 24]. 3913–3917. Available from: https://ieeexplore.ieee.org/document/8623461.
  • 32. Ghalandari V., Iranmanesh A. Energy and exergy analyses for a cement ball mill of a new generation cement plant and optimizing grinding process: A case study. Advanced Powder Technology 2020; 31(5): 1796–1810. https://doi.org/10.1016/j.apt.2020.02.013.
  • 33. Plashykhin S.V. Handbook on Resource-Efficient and Clean Production. Cement Industry. Kyiv: Center for Resource-Efficient and Clean Production; 2020, 96 (in Ukrainian).
  • 34. Schuhmacher M., Domingo J.L., Garreta J. Pollutants emitted by a cement plant: health risks for the population living in the neighborhood. Environmental Research 2004; 95(2): 198–206. https://doi.org/10.1016/j.envres.2003.08.011.
  • 35. Lei Y., Zhang Q., Nielsen C., He K. An inventory of primary air pollutants and CO2 emissions from cement production in China, 1990–2020. Atmospheric Environment 2011; 45(1): 147–154. https://doi.org/10.1016/j.atmosenv.2010.09.034.
  • 36. Guo Z., Bai X., Liu S., Luo L., Hao Y., Yunqian L., Xiao Y., Yang J., Tian H.Z. Heterogeneous variations on historical and future trends of CO2 and multiple air pollutants from the cement production process in China: emission inventory, spatial–temporal characteristics, and scenario projections. Environmental Science & Technology 2022; 56. https://doi.org/10.1021/acs.est.2c04445.
  • 37. Monkman S., Shao Y. Carbonation curing of slagcement concrete for binding CO2 and improving performance. Journal of Materials in Civil Engineering 2010; 22(4): 296–304. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000018.
  • 38. Scrivener K.L., John V.M., Gartner E.M. Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry. Cement and Concrete Research 2018; 114: 2–26. https://doi.org/10.1016/j.cemconres.2018.03.015.
  • 39. Herzog H.J., Golomb D.S. Carbon capture and storage from fossil fuel use. In: Encyclopedia of Energy Elsevier; 2004; 277–287.
  • 40. IPCC Special Report on Carbon Dioxide Capture and Storage. Metz B., Davidson O., de Coninck H.C., Loos M., Meyer L.A., editors. Cambridge: Cambridge University Press; 2005.
  • 41. Moritis G. CO2 injection gains momentum. Oil & Gas Journal 2006; 104(15): 37–41.
  • 42. Alvarado V., Manrique E. Enhanced oil recovery: Field planning and development strategies. Gulf Professional Publishing; 2010.
  • 43. Enick R.M., Klara S.M. CO2 solubility in water and brine under reservoir conditions. Chemical Engineering Communications 1990; 90(1): 23–33. https://doi.org/10.1080/00986449008940574.
  • 44. Thomas S. Enhanced oil recovery—An overview. Oil & Gas Science and Technology 2008; 63(1): 9–19. https://doi.org/10.2516/ogst:2007060.
  • 45. McGlade C., Speirs J., Sorrell S. Unconventional gas—A review of regional and global resource estimates. Energy 2013; 55: 571–584. https://doi.org/10.1016/j.energy.2013.01.048.
  • 46. Global CCS Institute. The global status of CCS 2020 [Internet]. 2020. Available from: https://www.globalccsinstitute.com/wp-content/uploads/2021/03/Global-Status-of-CCS-Report-English.pdf.
  • 47. Mykhailiuk V.V., Liakh M.M., Protsiuk V.R., Faflei O.Y., Protsiuk G.Y., Deineha P.O. Separator for Separating Water Vapor Condensate from Flue Gases in Cement Production. In: The Current State of Development of World Science: Characteristics and Features Lisbon, Portuguese Republic: International Center of Scientific Research 2023; 108–113.
  • 48. Kolle J.M., Fayaz M., Sayari A. Understanding the Effect of Water on CO2 Adsorption. Chemical Reviews 2021; 121(13): 7280–7345. https://doi.org/10.1021/acs.chemrev.0c00762.
  • 49. Katare P., Krupan A., Dewasthale A., Datar A., Dalkilic A.S. CFD analysis of cyclone separator used for fine filtration in separation industry. Case Studies in Thermal Engineering 2021; 28: 101384. https://doi.org/10.1016/j.csite.2021.101384.
  • 50. Chu K.W., Wang B., Xu D.L., Chen Y.X., Yu A.B. CFD–DEM simulation of the gas–solid flow in a cyclone separator. Chemical Engineering Science 2011; 66(5): 834–847.
  • 51. Kryzhanivskyi Y.I., Liakh M.M., Mykhailiuk V.V., Makoviychuk M.V., Kuchirka Y.M., Vytrekhovskyi Y.A. Method for separating liquid and mechanical particles from a gas stream. 152837, 2023 (in Ukrainian).
  • 52. Katopodes N.D. Free-surface flow: computational methods. Butterworth-Heinemann; 2018.
  • 53. Dragan V., Malael I., Gherman G.B. A comparative analysis between optimized and baseline high pressure compressor stages using tridimensional computational fluid dynamics. Engineering, Technology & Applied Science Research 2016; 6(4): 1103–1108. https://doi.org/10.48084/etasr.696.
  • 54. Maistruk V.V., Havryliv R.I., Popil A.S., Basistyi A.M. Evaluation of energy costs in the operation of a directflow cyclone using the FLOW SIMULATION software package. Eastern-European Journal of Advanced Technologies 2012; 6/8(60): 28–30 (in Ukrainian).
  • 55. Lucas F., Huebner R. Numerical simulation of single-phase and two-phase flows in separator vessels with inclined half-pipe inlet device applied in reciprocating compressors. Engineering, Technology& Applied Science Research 2018; 8: 2897–2900. https://doi.org/10.48084/etasr.1993.
  • 56. Flow Simulation. Technical reference solidworks flow simulation 2021, 2020. https://www.cati.com/wp-content/uploads/2021/04/swflow2021-technical-reference.pdf (Accessed: 29.05.2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-702497d2-9be2-49ec-a281-f9ecea944cad
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.