PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
One of the most important effluents in Guadiana Valley, Durango is El Tunal River, mostly used for agricultural and livestock supply. This river has been polluted by agricultural activity and wastewater discharges. Thus, this study aimed to evaluate the current quality of water and agricultural soil near the river, to estimate the environmental situation of the agricultural sector and its main pollution sources. Hence, a total of 24 soil and five water samples were taken, analysing parameters of organic matter, pH, nutrients, and heavy metals(loid)s (As, Cd, Pb, Zn) in five agricultural areas. The randomised experimental design showed significant variations in soil (p < 0.05) of organic matter, nitrogen, As, and Pb between sampling points, confirming suitable conditions for agriculture. Although contamination by heavy metal(loid)s exists, it is below permitted levels. In contrast, the physicochemical quality of the water indicated high levels of phosphates, total dissolved solids, and total coliforms, mainly in the nearest site of a wastewater treatment plant, thus the quality of the water is not suitable for consumption and irrigation for sensitive crops. Nevertheless, rainfall contributes to improve the quality of the river by diluting pollutants. Moreover, constant use of this water might represent a risk to human health and agriculture as it could transport elements to crops or soil, becoming a severe environmental problem.
Rocznik
Strony
373--386
Opis fizyczny
Bibliogr. 55 poz., rys., tab., wykr.
Twórcy
  • Institutional Doctorate Program in Agricultural and Forestry Sciences, Juarez University of the State of Durango, Durango, 34120, Mexico
  • Institute of Forestry and Timber Industry, Juarez University of the State of Durango, Durango, 34104, Mexico
  • Conacyt Chair, Juarez University of the State of Durango, Durango, 34104, Mexico
  • Faculty of Veterinary Medicine and Zootechnics, Juarez University of the State of Durango, Durango, 34307, Mexico
  • Institute of Forestry and Timber Industry, Juarez University of the State of Durango, Durango, 34104, Mexico
  • National Technological Institute of Mexico, Technological Institute of Guadiana Valley, Durango, 34371, Mexico
Bibliografia
  • [1] Larez IM, Rojero E, Nubes G, Gil ME. Water quality of the Cuchujaqui River, a wetland of global significance. Biotecnia. 2014;16(3):22-8. DOI: 10.18633/bt.v16i3.108.
  • [2] National Water Commission. Water statistics in Mexico. 2018. Available from: http://sina.conagua.gob.mx/publicaciones/EAM_2018.pdf.
  • [3] Zhang J, Li H, Zhou Y, Dou L, Cai L. Bioavailability and soil-to-crop transfer of heavy metals in farmland soils: A case study in the Pearl River Delta, South China. Environ Pollut. 2018;235:710-9. DOI: 10.1016/j.envpol.2017.12.106.
  • [4] Zwolak A, Sarzyńska M, Szpyrka E, Stawarczyk K. Sources of soil pollution by heavy metals and their accumulation in vegetables: A review. Water Air Soil Pollut. 2019;230(7). DOI: 10.1007/s11270-019-4221-y.
  • [5] Gillispie EC, Sowers TD, Duckworth OW, Polizzotto ML. Soil pollution due to irrigation with arseniccontaminated groundwater: Current state of science. Current Pollut Reports. 2015;1(1):1-12. DOI: 10.1007/s40726-015-0001-5.
  • [6] Ministry of Agriculture and Rural Development. Concurrence program with the federal entities, a compendium of indicators. 2018. Available from: https://www.agricultura.gob.mx/sites/default/files/sagarpa/document/2020/03/19/1889/19032020-compendio-pcef-2018.pdf.
  • [7] World Wildlife Fund. Gonzalo Río Arronte Foundation. The San Pedro Mezquital Basin. 2010. Available from: https://awsassets.panda.org/downloads/fichatecnica_sanpedromezquital.pdf.
  • [8] Off J Federation. Agreement by which the result of the technical studies of surface waters in the Hydrological Basins Laguna de Santiaguillo, La Tapona, La Sauceda River, El Tunal River, Santiago Bayacora River, Durango River, Poanas River, Suchil River, Graseros River, Presidio San Pedro-Mezquital y San Pedro-Output River of the San Pedro Hydrological Region number 11. 2013. Available from: https://www.dof.gob.mx/nota_detalle.php?codigo=5311750&fecha=27/08/2013#gsc.tab=0.
  • [9] National Water Commission. Program of preventive measures and mitigation of the drought 2014 for the city of Durango. 2014. Available from: https://www.gob.mx/cms/uploads/attachment/file/99854/PMPMS_Victoria_de_Durango_Dgo.pdf.
  • [10] Vicencio-de la Rosa MG, Villanueva-Fierro I, Pérez-López ME. Water quality of the Mezquital River, Durango, Mexico. Chem Eng Int Symp 2007:22-29. Mexico. Available from: https://cruzfierro.com/eventos/2007/sessions/enve04m.pdf.
  • [11] Mexican Geological Service. Statistical Yearbook of Mexican Mining. 2020. Available from: https://www.sgm.gob.mx/productos/pdf/Anuario_2020_Edicion_2021.pdf.
  • [12] Official Mexican Standard NOM-021-SEMARNAT-2000. Specifications of fertility, salinity and soil classification. Available from: http://www.ordenjuridico.gob.mx/Documentos/Federal/wo69255.pdf.
  • [13] American Public Health Association. Standard methods for the examination of water and wastewater. 23rd Edition, APHA, 2017. Washington DC, EUA. ISSN: 551979.
  • [14] Julca-Otiniano A, Meneses-Florián L, Blas-Sevillano R, Bello-Amez S. Organic matter, importance, experiences and its role in agriculture. IDESIA (Chile). 2006;24(1):49-61. DOI: 10.4067/S0718-34292006000100009.
  • [15] Mexican Standard NMX-AA-026-SCFI-2010. Water analyses, measurement of total Kjeldahl nitrogen in natural, residual and treated residual waters. Available from: https://www.gob.mx/cms/uploads/ attachment/file/166772/NMX-AA-026-SCFI-2010.pdf.
  • [16] Institute of Hydrology, Meteorology and Environmental Studies. Soluble phosphorous in water by ascorbic acid method. Available from: http://www.ideam.gov.co/documents/14691/38155/Fósforo+ Soluble+en+Agua+por+el+Método+del+Acido+Ascórbico..pdf/4894199d-b9f6-414b-bd00-1ebeca63b981.
  • [17] Mexican Standard NMX-AA-042-SCFI-2015. Water analyses, total coliform, faecal coliform and Escherichia coli enumeration, multi-tube most probable number method. Available from: https://www.gob.mx/cms/uploads/attachment/file/166147/nmx-aa-042-scfi-2015.pdf.
  • [18] Mexican Standard NMX-AA-051-SCFI-2016. Water analyses, measurement of metals by atomic absorption in natural, drinking, residual and treated residual waters. Available from: http://www.economianmx.gob.mx/normas/nmx/2010/nmx-aa-051-scfi-2016.pdf.
  • [19] Ecological Water Quality Criteria [CE-CCA-001]. Agreement for the ecological criteria of water quality. Secretary of Urban Development and Ecology. 1989. Available from: http://legismex.mty.itesm.mx/acu/acca001.pdf.
  • [20] Oficial Mexican Standard NOM-001-SEMARNAT-2021. Maximum permissible limits of pollutants in wastewater discharges in national waters and assets. Available from: https://www.dof.gob.mx/nota_detalle.php?codigo=5645374&fecha=11/03/2022#gsc.tab=0.
  • [21] Zhuang Q, Li G, Liu Z. Distribution, source, and pollution level of heavy metals in river sediments from South China. Catena. 2018;170:386-96. DOI: 10.1016/j.catena.2018.06.037.
  • [22] López-Pérez ME, Del Rincón-Castro MC, Muñoz-Torres C, Ruiz-Aguilar GML, Solís-Valdez S, Zanor GA. Evaluation of trace elements contamination in agricultural soils in the southwest of Guanajuato, Mexico. Acta Universitaria. 2018;27(6):10-21. DOI: 10.15174/au.2017.1386.
  • [23] Rubio H, Ortiz R, Quintana R, Saucedo R, Ochoa J, Rey NI. Water Quality Index (WQI) in the dam La Boquilla in Chihuahua, Mexico. Ecosistemas y Recursos Agropecuarios. 2014;1(2):139-50. DOI: 10.19136/era.a1n2.162.
  • [24] Pak HY, Chuah CJ, Tan ML, Yong EL, Snyder SA. A framework for assessing the adequacy of Water Quality Index-Quantifying parameter sensitivity and uncertainties in missing values distribution. Sci Total Environ. 2021;751:141982. DOI: 10.1016/j.scitotenv.2020.141982.
  • [25] Kachroud M, Trolard F, Kefi M, Jebari S, Bourrié G. Water quality indices: Challenges and application limits in the literature. Water. 2019;11(2):1-26. DOI: 10.3390/w11020361.
  • [26] Quiroz L, Izquierdo E, Menéndez C. Application of the water quality index in the Portoviejo River, Ecuador. Revista de Ingeniería Hidráulica y Ambiental. 2017;38(3):41-51. Available from: https://riha.cujae.edu.cu/index.php/riha/article/view/408.
  • [27] Varol M. Use of water quality index and multivariate statistical methods for the evaluation of water quality of a stream affected by multiple stressors: A case study. Environ Pollut. 2020;266:115417. DOI: 10.1016/j.envpol.2020.115417.
  • [28] R Development Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2021. Available from: https://www.r-project.org/.
  • [29] Zeng F, Ali S, Zhang H, Ouyang Y, Qiu B, Wu, F, et al. The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants. Environ Pollut. 2011;159(1):84-91. DOI: 10.1016/j.envpol.2010.09.019.
  • [30] Castro-González NP, Calderón-Sánchez F, Moreno-Rojas R, Tamariz-Flores JV, Reyes-Cervantes E. Heavy metals pollution level in wastewater and soils in the alto balsas sub-basin in Tlaxcala and Puebla, Mexico. Revista Internacional de Contaminación Ambiental. 2019;35(2):335-48. DOI: 10.20937/RICA.2019.35.02.06.
  • [31] Reyes CM, Rosales R, Rosales SB, Ríos JC, Ortiz IA, Santana S, et al. Observed degradation levels for chemical properties in soils used for agricultural production. Agrofaz - J Environ Agroecolog Sci. 2019;1(1):21-31. Available from: http://www.agrofaz.net/index.php/agrofaz/issue/view/3/Niveles%20observados%20para%20la%20degradaci%C3%B3n%20de%20las%20propiedades%20qu%C3%ADmicas%20en%20suelos%20usados%20para%20la%20producci%C3%B3n%20agr%C3%Adcola.
  • [32] Zhang Z, Wu X, Tu C, Huang X, Zhang J, Fang H, et al. Relationships between soil properties and the accumulation of heavy metals in different Brassica campestris L. growth stages in a Karst mountainous area. Ecotoxicol Environ Safety. 2020;206:1-11. DOI: 10.1016/j.ecoenv.2020.111150.
  • [33] Hu X, Wang J, Lv Y, Liu X, Zhong J, Cui X, et al. Effects of heavy metals/metalloids and soil properties on microbial communities in farmland in the vicinity of a metals smelter. Frontiers Microbiol. 2021;12:1-13. DOI: 10.3389/fmicb.2021.707786.
  • [34] Pikula D, Stepien W. Effect of the degree of soil contamination with heavy metals on their mobility in the soil profile in a microplot experiment. Agronomy. 2021;11(878):1-11. DOI: 10.3390/agronomy11050878.
  • [35] Zaky MH, Abdel-Salam ME. Heavy metals content relating to soil physical properties. Egyptian J Appl Sci. 2020;35(5):50-62. DOI: 10.21608/EJAS.2020.113000.
  • [36] Rudnick RL, Gao S. Composition of the continental crust. Treatise Geochem. 2013;(3):1-64. DOI: 10.1016/B978-0-08-095975-7.00301-6.
  • [37] Official Mexican Standard NOM-147-SEMARNAT/SSA1-2004. Criteria to determine the remediation concentrations of soils contaminated by arsenic, barium, beryllium, cadmium, hexavalent chromium, mercury, nickel, silver, lead, selenium, thallium, and vanadium. Available from: https://www.dof.gob.mx/nota_detalle.php?codigo=4964569&fecha=02/03/2007#gsc.tab=0.
  • [38] European Union. Heavy metals and organic compounds from wastes used as organic fertilisers. 2004. Available from: https://ec.europa.eu/environment/pdf/waste/compost/hm_finalreport.pdf.
  • [39] Jabeen F, Chaudhry AS. Monitoring trace metals in different tissues of Cyprinus carpio from the Indus River in Pakistan. Environ Monitoring Assess. 2010;170:645-56. DOI: 10.1007/s10661-009-1263-4.
  • [40] Sosa-Rodríguez FS, Vazquez-Arenas J, Ponce P, Escobedo-Bretado MA, Castellanos-Juárez FX, Labastida I, et al. Spatial distribution, mobility and potential health risks of arsenic and lead concentrations in semiarid fine top-soils of Durango City, Mexico. Catena. 2020;190:1-13. DOI: 10.1016/j.catena.2020.104540.
  • [41] da Silva CA, Garcia CAB, de Santana HLP, de Pontes GC, Wasserman JC, da Costa SSL. Metal and metalloid concentrations in marine fish marketed in Salvador, BA, northeastern Brazil, and associated human health risks. Regional Stud Marine Sci. 2021;43:101716. DOI: 10.1016/j.rsma.2021.101716.
  • [42] Osuna-Martínez CC, Armienta MA, Bergés-Tiznado ME, Páez-Osuna F. Arsenic in waters, soils, sediments, and biota from Mexico: An environmental review. Sci Total Environ. 2021;752:142062. DOI: 10.1016/j.scitotenv.2020.142062.
  • [43] Martínez-Cruz DA, Alarcón-Herrera MT, Reynoso-Cuevas L, Torres-Castañon LA. Space-time variation of arsenic and fluoride in groundwater in the city of Durango, Mexico. Tecnología y Ciencias del Agua. 2020;11(2):309-40. DOI: 10.24850/j-tyca-2020-02-09.
  • [44] Environmental Protection Agency. Water quality standards. 2003. Available from: https://www.epa.gov/sites/default/files/2014-12/documents/akwqs-chapter70.pdf.
  • [45] Guzmán A, Palacios O, Carrillo R, Chávez J, Nikolskii I. Surface water pollution at the Texcoco River Basin in Mexico. Agrociencia. 2007;41(4):385-93. Available from: https://agrociencia-colpos.org/index.php/agrociencia/article/view/547/547.
  • [46] Melo-González MG, Romero SM, Arjona M, Larumbe AG, Vaamonde G. Microbiological quality of Argentinian paprika. Revista Argentina Microbiologia. 2017;49(4):339-46. DOI: 10.1016/j.ram.2017.02.006.
  • [47] Navarro O, González J, Júnez-Ferreira HE, Bautista CF, Cardona A. Correlation of arsenic and fluoride in the groundwater for human consumption in a Semiarid Region of Mexico. Procedia Eng. 2017;186:333-40. DOI: 10.1016/j.proeng.2017.03.259.
  • [48] Dutt V, Sharma N. Potable water quality assessment of traditionally used springs in a hilly town of Bhaderwah, Jamu and Kashmir, India. Environ Monitoring Assess. 2022;194(30):1-20. DOI: 10.1007/s10661-021-09591-0.
  • [49] Arab S, Arab A. Effect of the physico-chemical parameters on the distribution of the faecal flora in a dam reservoir (Algeria). Revue d’Ecologie Terre et Vie. 2017;72(3):269-80. DOI: 10.3406/revec.2017.1890.
  • [50] Aram SA, Saalidong BM, Lartey PO. Comparative assessment of the relationship between coliform bacteria and water geochemistry in surface and ground water systems. PLoS ONE. 2021;16(9):1-17. DOI: 10.1371/journal.pone.0257715.
  • [51] Nyieku FE, Essandoh HMK, Armah FA, Awuah E. Modelling the interaction between physico-chemical and bacteriological characteristics of oilfields produced water from a waste management facility. Cleaner Waste Systems. 2022;3:1-7. DOI: 10.1016/j.clwas.2022.100054.
  • [52] Seo M, Lee H, Kim Y. Relationship between coliform bacteria and water quality factors at weir stations in the Nakdong River, South Korea. Water. 2019;11:1-16. DOI: 10.3390/w11061171.
  • [53] Sánchez-Martínez MG. Relationship between eutrophication levels and the presence of algae in El Tunal River and Durango River. Ph.D. Thesis. Durango, Mexico: National Polytechnic Institute; 2012. Available from: https://tesis.ipn.mx/handle/123456789/18226.
  • [54] Sedeño-Díaz JE, López-López E. Water quality in the Río Lerma, Mexico: An overview of the last quarter of the twentieth century. Water Resources Manage. 2007;21(10):1797-812. DOI: 10.1007/s11269-006-9128-x.
  • [55] Marín AE, Ramos JA, Martínez DA, Tuxpan J, De Lara J, Morán J. Identification of the hydrogeochemical processes and assessment of groundwater quality, using multivariate statistical approaches and water quality index in a wastewater irrigated region. Water. 2019;11(8):1702. DOI: 10.3390/w11081702.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-702227b8-55b2-4176-9e7a-20b48d4ef29a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.