PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Construction of integral equations describing limit equilibrium of cylindrical shell with a longitudinal crack under time-varying load

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The problem on limit equilibrium of a closed infinite cylindrical shell with a longitudinal crack under the action of time-varying load by the exponential law has been considered. According to presented conditions the expressions for the field of the stress-free deformations along the crack are presented in the form [wzory] are the operators identical to those given in [7] for the case of static load [wzory] and , are the operators that take into account the dependence of load on time. Using the same transformations that in the case of static load [7, 11], the key functions [wzory] are determined, and the clarification of the shell's stress-state is reduced to solving the system of singular integral equations (SIE). Its general form is similar to the same system constructed for static load [7], and the kernels of SIE have the form [wzory], where is a singular part [wzory], is a regular part in which the component [wzory] takes into account the time dependence of load [wzory], are described by the expressions similar to the same given in [7].
Twórcy
autor
  • Lviv National Agrarian University
  • Pidstryhach Institute for Applied Problems of Mechanics and Mathematics National Academy of Sciences of Ukraine
autor
  • Pidstryhach Institute for Applied Problems of Mechanics and Mathematics National Academy of Sciences of Ukraine
Bibliografia
  • 1. Dovbnya K. M., Hordienko M. M. 2010 A study of the strength of an elastoplastic orthotropic shell of arbitrary curvature with a surface crack. Journal of Mathematical Sciences, Vol.170 (6), 687-694.
  • 2. Goldenweiser A. L., Kaplunov Yu. D. 1998. Dynamic boundary layer in problems of vibration of shells, Mech. Solids. 23, 146-158.
  • 3. Goldenweiser A. L. 1961. Theory of Thin Elastic Shells. Int. Ser. of Monograph in Aeronautics and Astronautics, Pergamon Press, N.Y. 512.
  • 4. Guz A., Guz I., Menshykov O., Menshikov V. 2011. Stress-intensity factors for materials with interface cracks under harmonic loading. International Applied Mechanics. Vol. 46. No. 10, 1093-1100.
  • 5. Kit H., Kushnir R., Mykhas’kiv V., Nykolyshyn M. 2011. Methods for the determination of static and dynamic stresses in bodies with subsurface cracks. Materials Science. Vol. 47. Issue 2, 177-178.
  • 6. Kushnir R. M., Nykolyshyn M. M. 2003. “Stressed state and limiting equilibrium of piecewise homogeneous cylindrical shells with cracks,” Mat. Met. Fiz.-Mekh. Polya, 46, No. 1, 60–74. (in Ukrainian).
  • 7. Kushnir R. M., Nykolyshyn M. M., Osadchuk V. A. 2003. Elastic and Elastoplastic Limiting State of Shells with Defects [in Ukrainian], Spolom, Lviv, 318. (in Ukrainian).
  • 8. Kushnir R.M. 2001 Determination of the Limit Equilibrium of a Piecewise–Homogeneous Cylindrical Shell with Longitudinal Crack. Journal of Mathematical Sciences. Vol. 107(1), 3671–3679.
  • 9. Mirzaei M. 2008. On amplification of stress waves in cylindrical tubes under internal dynamic pressures. International Journal of Mechanical Sciences. 50 (8), 1292-1303.
  • 10. Mirzaei M., Karimi R. 2006. Crack growth analysis for a cylindrical shell under dynamic loading. ASME 2006 Pressure Vessels and Piping/ICPVT-11 Conference, 591-597.
  • 11. Osadchuk, V.A. (1985). Stress-Strain State and Limit Equilibrium of Shellwith Cuts. Naukova dumka, Kiev, 224 (in Russian).
  • 12. Pidstrigach Ya.S., Yarema S. Ya. 1961. Thermal Stresses in Shells, Ukrainian Academy of Sciences Press. Kiev, 212. (in Ukrainian).
  • 13. Podstrigach Ya.S., Shvetz R.N., 1978. Thermoelasticity of Thin Shells. Kiev, Naukova Dumka, 344. ( in Russian).
  • 14. Pothula S.G. 2009. Dynamic response of composite cylindrical shells under external impulsive loads. MSc thesis. University of Akron, 71.
  • 15. Pukach P. Kuzio I., Nytrebych Z. 2013. Influence of some speed parameters on the dynamics of nonlinear flexural vibrations of a drill column. Econtechmod : an international quarterly journal on economics in technology, new technologies and modelling processes. Vol. 2, No. 4, 61-66.
  • 16. Pukach P., Sokhan P., Stolyarchuk R. 2016. Investigation of mathematical models for vibrations of one dimensional environments with considering nonlinear resistance forces. Econtechmod : an international quarterly journal on economics in technology, new technologies and modelling processes. Vol. 5. No. 1., 97–102.
  • 17. Roytman А., Titova О. 2002. Analitical approach to determining dynamic characteristics of a cylinder shell with closing cracks. Journal of Sound and Vibration. 254(2), 379-386.
  • 18. Savruk M. P. 2003. New method for the solution of dynamic problems of the theory of elasticity and fracture mechanics. Mat. Sc., 39, No. 4, 465–471.
  • 19. Titova O.A., Lanko V.P. 2012. Analysis of the elastic vibrations of cylindrical shells with longidutional cracks. Collection of scientific works "Visnyk of Zaporizhzhya National University. Physical and mathematical Sciences". №1, 161-166. (in Ukrainian).
  • 20. Zhu X., Li T.Y., Zhao Y., Yan J. 2007. Vibrational power flow analysis of thin cylindrical shell with a circumferential surface crack. Journal of Sound and Vibration. Vol. 302. Iss. 1–2. No. 17, 332–349.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-701de4ca-c199-4eab-9c60-3d6a16618cd6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.