Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The industry has suffered major chromium wastewater issues. Chromium is a heavy metal that can threaten both nature and people’s health. Adsorption is a simple, environmentally friendly, and effective process for removing chromium from wastewater. Iron sand is an alternate adsorbent that can adsorb chromium. The iron sand in this research originated from Sukabumi, Indonesia, with a hematite content of 63.335%. The goal of this study is to evaluate the adsorption mechanism of hematite based on adsorbent weight, Cr(VI) initial concentration, pH of the solution, and contact time. This study was conducted experimentally throughout multiple phases. First, hematite was characterized using XRD, BET, FTIR and XRF to assess crystal structure, mineral composition, surface area, functional groups and the percentage of hematite in iron sand. Subsequently, the pH and contact time were optimized. The highest adsorption capacity is then determined using the Langmuir and Freundlich isotherms. The study found that hematite has a surface area before and after adsorption of 619.486 m2/g and 334.783 m2/g, with XRD peaks at 2θ = 33.037° and 35.357°, Fe-O bonds with a wavelength of 647.17 cm-1 and hematite content of 63.335%. Optimal Cr(VI) adsorption occurs at pH 1, with a contact time of 120 minutes, Cr(VI) concentration of 50 mg/L, 5.0 g mass of hematite, with an adsorption capacity (Qe), and adsorption efficiency (%) of 3.83 mg/g and 75.95%. The Freundlich isotherm model accurately represents adsorption, revealing a heterogeneous surface. The linear equation of the Freundlich curve is Log Qe = 0.1152 Log Ce + 0.6376, R2 = 0.9999, with the value of adsorption capacity (kf) = 4.3411 mg/g and adsorption intensity (n) = 8.681. The enthalpy of adsorption (ΔHads) at a concentration of 20 mg/L, 2.5 g, pH 3, and 30 minutes is -95.852 kJ/mol, indicating chemisorption.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
223--233
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
autor
- Research Centre for Limnology and Water Resources, National Research and Innovation Agency, Republic of Indonesia, Jl. Raya Jakarta – Bogor KM. 46 Cibinong, Indonesia
autor
- Student in the Department of Chemistry, Faculty of Mathematics and Sciences, Pakuan University, Bogor, Indonesia
autor
- Research Centre for Limnology and Water Resources, National Research and Innovation Agency, Republic of Indonesia, Jl. Raya Jakarta – Bogor KM. 46 Cibinong, Indonesia
autor
- Research Centre for Limnology and Water Resources, National Research and Innovation Agency, Republic of Indonesia, Jl. Raya Jakarta – Bogor KM. 46 Cibinong, Indonesia
autor
- Research Centre for Limnology and Water Resources, National Research and Innovation Agency, Republic of Indonesia, Jl. Raya Jakarta – Bogor KM. 46 Cibinong, Indonesia
autor
- Department of Chemistry, Faculty of Mathematics and Sciences, Pakuan University, Bogor, Indonesia
Bibliografia
- 1. Adegoke, H.I., Adekola, F.A. (2012). Equilibrium sorption of hexavalent chromium from aqueous solution using synthetic hematite. Colloid J. 74, 420– 426. https://doi.org/10.1134/S1061933X12040035
- 2. Brazesh B., Mousavi, S.M., Zarei, M., Ghaedi, M., Bahrani, S., Hashemi, S.A. (2021). Chapter 9 Biosorption. Interface Science and Technology 33, 587–628. https://doi.org/10.1016/ B978-0-12-818805-7.00003-5
- 3. Chakraborty, R., Asthana, A., Singh, A. K., Jain, B., & Susan, A. B. H. (2020). Adsorption of heavy metal ions by various low-cost adsorbents: a review. International Journal of Environmental Analytical Chemistry, 102(2), 342–379. https://doi.org/10.1080/03067319.2020.1722811
- 4. Chen, J.P., Wang, L.K., Wang, M.S., Hung, Y., Shammas, N.K. (2017). Remediation of heavy metals in the environment. London: CRC Press.
- 5. Cooney, D.O. (1999). Adsorption design for wastewater treatment. Lewis Publishers, CRC Press LLC.
- 6. Fahlepy, M.R., Tiwow, V.A., Subaer. (2018). Characterization of magnetite (Fe3O4) minerals from natural iron sand of Bonto Kanang Village Takalar for ink powder (toner) application. Journal of Physics: Conference Series 997 012036 https://doi.org/10.1088/1742-6596/997/1/012036
- 7. Farhan, A., Zulfiqar, M., Samiah, et al. (2023). Removal of toxic metals from water by nanocomposites through advanced remediation processes and photocatalytic oxidation. Curr Pollution Rep 9, 338–358. https://doi.org/10.1007/s40726-023-00253-y
- 8. Foo, K.Y., Hameed, B.H. (2010). Insights into the modeling of adsorption isotherm systems. Chemical Engineering J. 156(1), 2–10. https://doi.org/10.1016/j.cej.2009.09.013
- 9. Gahrouei A.E., Rezapour, A., Pirooz, M., Pourebrahimi, S. (2024). From classic to cutting-edge solutions: A comprehensive review of materials and methods for heavy metal removal from water environments. Desalination & Water Treatment 319(100446) https://doi.org/10.1016/j.dwt.2024.100446
- 10. Karbeka, M., Koly, F.V.L., Tellu, N.M. (2020). Karakterisasi sifat kemagnetan pasir besi Pantai Puntaru Kabupetn Alor-NTT. Lantanida Journal 8(2), 96–188. 10.22373/lj.v8i2.7867
- 11. Kralik, M. (2014). Adsorption, chemisorption, and catalyst. Chemical Papers 68(12) 10.2478/s11696-014-0624-9
- 12. Langmuir, I. (1917). The constitution and fundamental properties of solids and liquids. II Liquids. Journal of the American Chemical Society 39(9), 1848–1906. https://doi.org/10.1021/ja02254a006
- 13. Nafisyah, E., Arrisujaya, D., Susanti, E. (2023). The utilization of water hyacinth (Eichhornia crassipes) harvested from the phytoremediation process as activated carbon in Cr(VI) adsorption. IOP Conference Series: Earth and Environmental Science 1211(1). https://doi.org/10.1088/17551315/1211/1/012019
- 14. Obanijesu, E.O., Bello, O., Osinowo, F.A.O., Macaulay, S.R.A. 2004. Development of a packed-bed reactor for the recovery of metals from industrial wastewater. Int. J. Env. And Pollution 22(6). https://doi.org/10.1504/IJEP.2004.006048
- 15. Papirio, S. (2012). Fluidized-bed bioreactor applications for the treatment of metal-, sulfate- and nitrate-contaminated mine waters. Thesis. Università degli Studi di Cassino e del Lazio Meridionale. 190.
- 16. Peng, H., Guo, J. (2020). Removal of chromium from wastewater by membrane filtration, chemical precipitation, ion exchange, adsorption electrocoagulation, electrochemical reduction, electrodialysis, electrodeionization, photocatalysis, and nanotechnology: a review. Environ Chem Lett 18, 2055– 2068. https://doi.org/10.1007/s10311-020-01058-x
- 17. Rettob, A. (2019). Characterization of iron sand magnetic materials coated with 2-amino benzimidazole modified silica via green process. IOP Conf. Ser.: Earth Environ. Sci. 235, 012075 https://doi.org/10.1088/1755-1315/235/1/012075
- 18. Rianna, M., Sembiring, T., Situmorang, M., Kurniawan, C., Setiadi, E. A., Tetuko, A. P., & Sebayang, P. (2018). Characterization of natural iron sand from Kata Beach, West Sumatra with high energy milling (Hem). Jurnal Natural, 18(2), 97–100. https://doi.org/10.24815/jn.v18i2.11163
- 19. Selvasembian, R., Singh, P. (2022). Biosorption fo wastewater contaminants. USA: John Willey & Sons Ltd. 296.
- 20. Sousa, D.B.S.A.B. (2021). Assessing the potential use of water treatment sludge containing activated carbon for the removal of emerging pollutants. Portugal: Universidade NOVA de Lisboa.
- 21. Sulastri, S., Nuryono, Kartini, I., Kunarti, E.S. (2014). Kinetika dan Keseimbangan Adsorpsi Ion Kromium (III) dalam Larutan pada Senyawa Silika dan Modifikasi Silika Hasil Sintesis dari Abu Sekam Padi. Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Negeri Yogyakarta.
- 22. Sukirman, E., Sarwanto, Y., Insani, A., Rina, M., Purwanto, A. (2018). Magnetic structure of magnetite phase of iron sand retrieved from Banten, Indonesia. Journal of Physics: Conference Series, 1091(1). https://doi.org/10.1088/17426596/1091/1/012007
- 23. Tchobanoglous, G., Stensel, H.D., Tsuchihashi, R., Abu-Orf, M., Bowden, G., Pfrang, W. (2014). Wastewater engineering treatment and resource recovery. Fifth Edition. 1. US: McGraw-Hill International Edition.
- 24. Thommes, Matthias, Kaneko, Katsumi, Neimark, Alexander V., Olivier, James P., Rodriguez-Reinoso, Francisco, Rouquerol, Jean and Sing, Kenneth S.W. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution. Pure and Applied Chemistry, 87(9–10), 1051–1069. https://doi.org/10.1515/pac-2014-1117
- 25. Togibasa, O., Akbar, M., Pratama, A., Bijaksana, S. (2019). Distribution of magnetic susceptibility of natural iron sand in the Sarmi Coast Area. Journal of Physics: Conference Series 1204, 012074 https://doi.org/10.1088/1742-6596/1204/1/012074
- 26. Weber, Jr.W.J. (1977). Physics chemical process for water quality control. New York: John Wiley Interscience. https://doi.org/10.1002/aic.690190245
- 27. Zheng, Z., & Duan, X. (2021). Mitigating the health effects of aqueous Cr(VI) with iron-modified biochar. International Journal of Environmental Research and Public Health, 19(3), 1481. https://doi.org/10.3390/ijerph19031481
- 28. Ugwu, E.I, Tursunov, O., Kodirov, D., Shaker, L.M., Al-Amiery, A.A., Yangibaeva, I., Shavkarov, F. (2020). Adsorption mechanisms for heavy metal removal using low-cost adsorbents: A review. IOP Conference Series: Earth and Environmental Science 614, 012166. https://doi.org/10.1088/1755-1315/614/1/012
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-701cba8e-36c4-4cd0-856a-ca8ae489d9a4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.