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Abstract: In this paper we present a numerical procedure for calculation of electrical conduc-
tivity in a periodic lattice of one-dimensional zero range potentials with a case of dominant
impurity scattering. The conductivity was previously obtained in an integral form via an ap-
proximate solution of the kinetic Kolmogorov equation. The proposed approach is based on
the quadrature formula for certain type of integrals. The results are compared with the low
temperature limit approximation.
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1. Introduction
It is known that the properties of dimensional structures exhibit a conside-

rable difference from their bulk analogs [1, 2]. These features allow such structures
to be utilized in practical applications as the core part of different electronic de-
vices.

We start from the statement that the electric charge transport process is
a non-equilibrium process, hence, it implies a kinetic description. One of the
ways to approach this problem is to use the Kolmogorov equation for distribution
functions [3]. A scattering integral of the system should be provided to solve it.

In some cases a one-dimensional model can be a good approximation for
real systems [4]. However, even for this simplified problem, an explicit analytical
solution can be found only assuming the number of approximations.

The idea of this work is to exclude the low-temperature approximation from
the previously obtained expression for the point impurity induced resistivity in the
Dirac comb potential [5]. For this purpose an integration technique was proposed.

In section 2 we start from providing some known electron properties in
the Dirac comb potential and the previously obtained expression for conductivity
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in an explicit form. Next, in Section 3 a quadrature formula and details of the
numerical integration procedure for a certain type of integrals are proposed.
Then, the calculation results for different parameters are presented and compared
with the low temperature approximation in Section 4. Finally, Section 5 contains
conclusions.

2. 1D conductivity calculation
Let us start from a model electron moving in the Dirac comb potential:

̂𝑉 = 𝛽𝛿(𝑥−𝑛𝑎), 𝑛 = 0,±1,… (1)

where 𝛽 – the parameter of the potential, 𝑎 – the period of the cell.
For this model, expressions for the band structure and other relevant

physical quantities can be obtained in an analytical form [5]:
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where 𝜌 – the density of states, 𝑣 – the electron velocity, 𝑚∗ – the effective mass.
An analytical form of (3), (4) and (5) can be trivially obtained. One may

notice that (3) can be easily integrated over 𝐸 which allows straightforward
calculation of the Fermi energy.

Let us introduce the Bloch wave basis set for system (1) and use it for the
scattering probability calculation.

Assuming point impurity with potential 𝛾𝛿(𝑥−𝑥0), the scattering probabi-
lity can be expressed as follows:
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where 𝑘 =
√

2𝑚𝐸/ℏ – the electron wave number, 𝑚 – the electron rest mass, ℏ –
the Planck constant, 𝛾 – the impurity strength, 𝑥0 – the impurity position and
𝑏± stands for:

𝑏± = 𝑒±𝑖𝐾𝑎𝑒−𝑖𝑘𝑎 −1
𝑒±𝑖𝐾𝑎𝑒𝑖𝑘𝑎 −1

(7)

One can see that expression (6) for Bloch waves differs a lot from plain wave
scattering:
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Figure 1. Scattering probability for Bloch waves (top) and plain waves (bottom)

For a static conductivity problem with a purely electrostatic field applied,
assuming that current is homogeneous and small, one can find conductivity of the
system:

𝜎 = − 𝑒2
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where 𝑓0 – the Fermi-Dirac distribution function:

𝑓0(𝐸,𝑇 ) = 1
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3. Numerical integration
3.1. Quadrature

Consider the following integral:
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The Fermi-Dirac distribution function:

𝑛𝑓(𝐸,𝑇 ) = 1

𝑒
𝐸−𝜇(𝑇)

𝑘𝐵𝑇 +1
, (11)

where 𝑘𝐵 – the Boltzman constant, 𝜇 – the chemical potential (𝜇(𝑇 = 0) = 𝐸𝑓, 𝐸𝑓
– Fermi energy), 𝑇 – the temperature.

The behavior of functions 𝐾(𝐸) and 𝑛′
𝐹(𝐸,𝜇,𝑇 ) makes it impossible to

calculate an integral with the classical numerical integrations techniques. Thus,
one should create an appropriate quadrature formula.

In order to construct proper numerical procedure let us note that 𝑛′
𝑓 –

a rapidly changing function, and 𝐹(𝐸) (which is 𝐾(𝐸) or another function) –
a slowly changing function.
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(12)

In equation (12) we used the fact that function 𝐹(𝐸) can be replaced for
every small interval [𝐸𝑖,𝐸𝑖+1] with its value 𝐹( ̄𝐸𝑖) at point ̄𝐸𝑖 ∈ [𝐸𝑖,𝐸𝑖+1], and
taken outside the integral sign.

As has been shown before, a derivative of function 𝐾(𝐸) equals infinity at
the band edge points. In this case, procedure (12) will not suit and one should
use the trapezoidal method as a fallback.

Figure 2. Mutual position of 𝑛′
𝑓(𝐸,𝜇) (blue) and 𝐾(𝐸) (red) functions

3.2. Grid
The fact that 𝑛′

𝑓(𝐸) decays exponentially to zero on both sides of point
𝐸 = 𝜇 allows us to shrink the integration area to a relatively small interval around
the peak. The integration interval was set in terms of the peak width 2𝑘𝐵𝑇. It is
natural to set a grid centered on the peak of 𝑛′

𝐹(𝐸,𝜇,𝑇 ) functions.



Numerical Calculation of 1D ZRP Chain Electrical Conductivity 189

In the case if 𝜇 is far from the band edges, the integration interval is
[𝜇−𝑚𝑘𝐵𝑇 ,𝜇+𝑚𝑘𝐵𝑇 ], where 𝑚 – some positive number. In the case if 𝜇 is near
the band edge, the grid is chosen in the way that both 𝜇 and the nearest band
edge are points of the grid.

3.3. Error estimation
The absolute error for (12) can be estimated as follows:
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where 𝜉 ∈ [𝐸𝑖,𝐸𝑖+1].
In order to estimate the error associated with the integration interval

reduction, let us consider the following integral:
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Let 𝐸1 = 𝜇−𝑚𝑘𝐵𝑇 and 𝐸2 = 𝜇+𝑚𝑘𝐵𝑇, where 𝑚 – some positive number.
Let us substitute 𝐸1 and 𝐸2 to (13) and set it equal to the full integral −1 plus
error associated with truncating Δ:
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which means that:
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4. Results and discussion
The results of numerical experiments compared with a direct evaluation

based on low temperature approximation [6] are shown in Figure 3 (original



190 S. Botman

Figure 3. Conductivity results obtained within numerical procedure (blue-green surface) and
within low temperature approximation (red-yellow surface)

Figure 4. Normalized conductivity results obtained within numerical procedure (left) and
within low temperature approximation (right)

plots) and Figure 4 (normalised to 300 K plots). Both approaches have shown
a tolerable consistency, which supports the validity of the proposed integration
method.

It is known that for low temperatures (up to room temperatures) the main
contribution to the resistivity is made by defect scattering. For a regular structure
of a quasi 1D nanoobject, the surface can be treated as a defect. Considering
this, the basic model parameters depend on radius 𝑟 as follows: 𝛽 = const,
𝛾 = 𝛾(𝑟) ∼ 2𝜋𝑟𝑙. Another parameter which depends on 𝑟 and 𝑙 is a full number
of electrons (which is essential for the Fermi energy and the chemical potential
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Figure 5. Numerical experiments for radius dependence:
(a) 𝛽 = −1, 𝑎 = 10, 𝑥0 = 𝑎/2, 𝛾 = −0.1−0.01𝑟, 𝑁 = 1.75+(0.001𝑟)2;

(b) 𝛽 = −0.5, 𝑎 = 10, 𝑥0 = 𝑎/2, 𝛾 = −0.1−0.01𝑟, 𝑁 = 0.25+(0.001𝑟)2;
(c) 𝛽 = −1.5, 𝑎 = 10, 𝑥0 = 𝑎/2, 𝛾 = −0.1−0.01𝑟, 𝑁 = 0.25+(0.005𝑟)2;
(d) 𝛽 = −1.0, 𝑎 = 10, 𝑥0 = 𝑎/2, 𝛾 = −0.1−0.001𝑟, 𝑁 = 1.8+(0.001𝑟)2

calculation): 𝑁𝑒 = 𝑁𝑒(𝑑) ∼ 𝜋𝑟2 𝑙. Next, the following model for radius dependence
of parameters was considered: 𝑎 = 𝑐𝑜𝑛𝑠𝑡, 𝛽 = 𝑐𝑜𝑛𝑠𝑡, 𝛾 = 𝛾0 +𝛾1𝑟, 𝑁 = 𝑁0 +(𝑁1𝑟)2.
The results are shown in Figure 5.

The model approbation has shown promising results with a vast variety of
dependency types observed. However, there is no way at the moment to confidently
link the parameters of the model to a real system. The next step of the research
will be a three-dimensional model with a cylindrical symmetry assumed.

5. Conclusions
In order to calculate the impurity induced electrical conductivity a quadra-

ture formula for integration was proposed. The obtained results showed agreement
with the known low temperature approximation formula. The variety of conduc-
tivity temperature dependences encourage optimism towards future development
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of this model, including linking it to the experimental results. The proposed inte-
gration method can be also used in other problems, where the integrand consists
of an integrable quick changing function and a slow changing function.
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