PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assessment of wave energy in the Persian Gulf : An evaluation of the impacts of climate change

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We are motivated to study the exploitation of marine energy as a renewable resource because of society's ever-increasing energy demands, and a concomitant need to reduce greenhouse gas emissions. Additionally, climate-related variations in wave energy should be investigated in order to ensure the stability of its long-term availability. Here, we investigate the potential for wave energy in the Persian Gulf along the southern coasts of Iran. To do so, we have applied the Mike SW numerical model and ECMWF wind field data for a 30-year study, from 1988 to 2017. For this purpose, wave energy was evaluated at six points in the western, northern, southern, and eastern parts of the Persian Gulf. To assess the impacts of climate change, we also consider the wave regime from 2070 to 2099 (for 30 years) following IPCC RCP4.5 and RCP8.5 climate change scenarios. Our findings suggest that in the present climate, seasonal variations in the mean wave parameters (i.e. wave energy, wave period, and significant wave height) correspond to the lowest wave energy in the summers, and highest in the winters. In the future climate change scenarios, energy level variations generally have similar patterns, with slight modulations in some local areas.
Słowa kluczowe
Czasopismo
Rocznik
Strony
27--39
Opis fizyczny
Bibliogr. 48 poz., mapka, rys., tab., wykr.
Twórcy
  • Department of Civil Engineering, Environmental Sciences Research Center, IslamShahr Branch, Islamic Azad University, IslamShahr, Iran
  • Fisheries and Oceans Canada, Bedford Institute of Oceanography, Dartmouth, Nova Scotia, Canada
  • Department of Civil Engineering, Environmental Sciences Research Center, IslamShahr Branch, Islamic Azad University, IslamShahr, Iran
autor
  • Fisheries and Oceans Canada, Bedford Institute of Oceanography, Dartmouth, Nova Scotia, Canada
Bibliografia
  • [1] Aboobacker, V. M., Shanas, P. R., Alsaafani, M. A., Albarakati, A. M., 2017. Wave energy resource assessment for Red Sea. Renew. Energ. 114, 46-58.
  • [2] Akpınar, A., Kömürcü, M. İ., 2013. Assessment of wave energy resource of the Black Sea based on 15-year numerical hindcast data. Appl. Energ. 101, 502-512.
  • [3] Alcorn, R., 2013. Wave Energy. Future Energy: Improved, Sustainable and Clean Options for our Planet, 357-382.
  • [4] Alizadeh, M. J., Alinejad-Tabrizi, T., Kavianpour, M. R., Shamshirband, S., 2020. Projection of spatiotemporal variability of wave power in the Persian Gulf by the end of 21st century: GCM and CORDEX ensemble. J. Cleaner Prod. 256, 120400. https://doi.org/10.1016/j.jclepro.2020.120400.
  • [5] Allen, M. R., Barros, V. R., Broome, J., Cramer, W., Christ, R., Church, J. A., Clarke, L., Dahe, Q., Dasgupta, P., Dubash, N. K., Edenhofer, O., 2014. IPCC fifth assessment synthesis report-climate change synthesis report. In: WMO, UNEP, IPCC, Geneva, Switzerland, 151 pp.
  • [6] Alonso, R., Solari, S., Teixeira, L., 2015. Wave Energy resource assessment in Uruguay. Energy 93, 683-696.
  • [7] Amirinia, G., Mafi, S., Mazaheri, S., 2017. Offshore wind resource assessment of Persian Gulf using uncertainty analysis and GIS. Renew. Energ. 113, 915-929.
  • [8] Appendini, C. M, Urbano-Latorre, C. P., Figueroa, B., Dagua-Paz, C. J., Torres-Freyermuth, A., Salles, P., 2015. Wave Energy potential assessment in the Caribbean Low Level Jet using wave hindcast information. Appl. Energ. 137, 375-384.
  • [9] Armanfar, M., Goharnejad, H., Niri, M. Z., Perrie, W., 2019. Assessment of coastal vulnerability in Chabahar Bay due to climate change scenarios. Oceanologia 61 (4), 412-426. https://doi.org/10.1016/j.oceano.2019.03.001.
  • [10] Besio, G., Mentaschi, L., Mazzino, A., 2016. Wave Energy resource assessment in the Mediterranean Sea on the basis of a 35-year hindcast. Energy 94, 50-63.
  • [11] Breslow, P. B., Sailor, D. J., 2002. Vulnerability of wind power resources to climate change in the continental United States. Renew. Energ. 27 (4), 585-598.
  • [12] Casas-Prat, M., Wang, X. L., Swart, N., 2018. CMIP5-based global wave climate projections including the entire Arctic Ocean. Ocean Model 123, 66-85.
  • [13] DHI, M., 2005. spectral wave module-scientific documentation. Danish Hydraulic Institute.
  • [14] Ertekin, R. C., Yingfan, X., 1994. Preliminary assessment of the wave-energy resource using observed wave and wind data. Energy 19 (7), 729-738.
  • [15] Gallagher, S., Tiron, R., Whelan, E., Gleeson, E., Dias, F., McGrath, R., 2016. The nearshore wind and wave energy potential of Ireland: a high resolution assessment of availability and accessibility. Renew. Energ. 88, 494-516.
  • [16] Goharnejad, H., Shamsai, A., Hosseini, S. A., 2013. Vulnerability assessment of southern coastal areas of Iran to sea level rise: evaluation of climate change impact. Oceanologia 55 (3), 611-637. https://doi.org/10.5697/oc.55-3.611.
  • [17] Hagerman, G., 2001. Southern New England Wave Energy Resource Potential. In: Proc. Building Energy Conf. 21-24 2001 March. Boston, USA.
  • [18] Hemer, M. A., Manasseh, R., McInnes, K. L., Penesis, I., Pitman, T., 2018. Perspectives on a way forward for ocean renewable energy in Australia. Renew. Energ. 127, 733-745.
  • [19] Hemer, M. A., Zieger, S., Durrant, T., O’Grady, J., Hoeke, R. K., McInnes, K. L., Rosebrock, U., 2017. A revised assessment of Australia’s national wave energy resource. Renew. Energ. 114, 85-107.
  • [20] Implementation Agreement on Ocean Energy Systems, 2007. Implementing agreement on ocean Energy systems (IEA-OES). Annual Rep. Internat. Energy Agency.
  • [21] Jadidoleslam, N., Ozger, M., Agıralioglu, N., 2016. Wave power potential assessment of Aegean Sea with an integrated 15-year data. Renew. Energ. 86, 104-159.
  • [22] Kamranzad, B., 2018. Persian Gulf zone classification based on the wind and wave climate variability. Ocean Eng 169, 604-635.
  • [23] Kamranzad, B., Chegini, V., 2014. Study of wave energy resources in Persian Gulf: seasonal and monthly distributions. In: 11th Int. Conf. ‘Coasts, Ports and Marine Structures’. Tehran, Iran.
  • [24] Kamranzad, B., Etemad-Shahidi, A., Chegini, V., 2013. Assessment of wave energy variation in the Persian Gulf. Ocean Eng 70, 72-80.
  • [25] Kamranzad, B., Etemad-Shahidi, A., Chegini, V., 2017. Developing an optimum hotspot identifier for wave energy extracting in the northern Persian Gulf. Renew. Energ. 14, 59-71.
  • [26] Kamranzad, B., Etemad-Shahidi, A., Chegini, V., Yeganeh-Bakhtiary, A., 2015. Climate change impact on wave Energy in the Persian Gulf. Ocean Dynam 65 (6), 777-794.
  • [27] Kapelonis, Z. G., Gavriliadis, N., N, P., Athanassoulis, G. A., 2015. Extreme value analysis of dynamical wave climate projections in the Mediterranean Sea. Procedia Comput. Sci. 66, 210-219.
  • [28] Korn, P., 2017. Formulation of an unstructured grid model for global ocean dynamics. J. Comput. Phys. 339, 525-552.
  • [29] Kumar, V. S., Anoop, T. R., 2015. Wave energy resource assessment for the Indian shelf seas. Renew. Energ. 76, 212-219.
  • [30] Langodan, S., Viswanadhapalli, Y., Dasari, H. P., Knio, O., Hoteit, I., 2016. A high-resolution assessment of wind and wave energy potentials in the Red Sea. Appl. Energ. 181, 244-255.
  • [31] Liang, B, Fan, F, Yin, Z, Shi, H, Lee, D, 2016. Numerical modeling of the nearshore wave Energy resources of Shandong peninsula. China. Renew. Energ. 57, 330-338.
  • [32] Liao, Y. P., Kaihatu, J. M., 2016. Numerical investigation of wind waves in the Persian Gulf: bathymetry effects. J. Atmos. Ocean. Technol. 33 (1), 17-31.
  • [33] López, M., Veigas, M., Iglesias, G., 2015. On the wave Energy resource of Peru. Energ. Convers Manage. 90, 34-40.
  • [34] Morim, J., Cartwright, N., Etemad-Shahidi, A., Strauss, D., Hemmer, M., 2014. A review of wave Energy estimates for nearshore shelf waters off Australia. Int. J. Marine Energ. 7, 57-70.
  • [35] Neill, S. P., Hashemi, M. R., 2013. Wave power variability over the northwest European shelf seas. Appl. Energy 106, 31-46.
  • [36] Neill, S. P., Lewis, M. J., Hashemi, M. R., Slater, E., Lawrence, J., Spall, S. A., 2014. Inter-annual and inter-seasonal variability of the Orkney wave power resource. Appl. Energ. 132, 339-348.
  • [37] Ponce de León, S., Orfila, A., Simarro, G., 2016. Wave energy in the Balearic Sea. Evolution from a 29 year spectral wave hindcast. Renew. Energ. 85 (C), 1192-1200. https://doi.org/10.1016/j.renene.2015.07.076.
  • [38] Pous, S., Lazure, P., Carton, X., 2015. A model of the general circulation in the Persian Gulf and in the Strait of Hormuz: Intraseasonal to interannual variability. Cont. Shelf Res. 94, 55-70.
  • [39] Riahi, K., Rao, S., Krey, V., Cho, C., Chirkov, V., Fischer, G., Kindermann, G., Nakicenovic, N., Rafaj, P., 2011. RCP 8.5-A scenario of comparatively high greenhouse gas emissions. Climat. Change 109 (1-2), art no. 33. https://doi.org/10.1007/s10584-011-0149-y.
  • [40] Rusu, E., Onea, F., 2013. Evaluation of the wind and wave energy along the Caspian Sea. Energy 50, 1-14.
  • [41] Shanas, P. R., Aboobacker, V. M., Albarakati, A. M., Zubier, K. M., 2017. Climate driven variability of wind-waves in the Red Sea. Ocean Model 119, 105-117.
  • [42] Thomson, A. M., Calvin, K. V., Smith, S. J., Kyle, G. P., Volke, A., Patel, P., Delgado-Arias, S., Bond-Lamberty, B., Wise, M. A., Clarke, L. E., Edmonds, J. A., 2011. RCP4. 5: a pathway for stabilization of radiative forcing by 2100. Climat. Change 109 (1-2), art. no 77. https://doi.org/10.1007/s10584-011-0151-4.
  • [43] Vannucchi, V., Cappietti, L., 2016. Wave energy assessment and performance estimation of state of the art wave energy converters in Italian hotspots. Sustainability 8 (12), 1300. https://doi.org/10.3390/su8121300.
  • [44] Vieira, F., Cavalcante, G., Campos, E., 2020. Analysis of wave climate and trends in a semi-enclosed basin (Persian Gulf) using a validated SWAN model. Ocean Eng 196, 106821. https://doi.org/10.1016/j.oceaneng.2019.106821.
  • [45] Wang, Z., Dong, S., Li, X., Guedes-Soares, C., 2016. Assessments of wave energy in the Bohai Sea, China. Renew. Energ. 90, 145-156.
  • [46] WCRP Global Sea Level Budget Group, 2018. Global sea-level budget 1993-present. Earth Sys. Sci. Data 10, 1551-1590. http://dx.doi.org/10.5194/essd-10-1551-2018.
  • [47] Zhou, G., Huang, J., Yue, T., Luo, Q., Zhang, G., 2015a. Temporal-Spatial distribution of wave Energy: A case study of Beibu Gulf, China. Renew Energ. 74, 344-356.
  • [48] Zhou, G., Huang, J., Zhang, G., 2015b. Evaluation of the wave Energy conditions along the coastal waters of Beibu Gulf, China. Energy 85, 449-457. https://doi.org/10.1016/j.energy.2015.03.094.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-701938d9-b674-4480-b7b4-345451d75ce8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.