Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
To enhance the strength of metastable austenitic stainless steel (ASS) sheet components, a novel method was proposed for the strengthening of a metastable ASS dome by a newly designed bulging device under deep cryogenic conditions. The load curves, Vickers microhardness, thickness distribution, and deformation law of formed dome components at room temperature (RT) and cryogenic temperature (CT) were discussed in detail. The strengthening mechanism of metastable ASS domes was elucidated by phase transformation, and the evolutions of grain boundary and dislocation at RT and CT, respectively. It is found that the strength of metastable ASS domes at CT increases with increasing strain. The strengthening effect of the metastable ASS sheet under biaxial stress state is significantly enhanced. Less martensite is generated at a low plastic strain, and the stability of the austenite phase is noticeably decreased under a large strain at CT. The dislocation distribution at RT is relatively uniform and is not accumulated at grain boundaries, while numerous dislocations at CT are apparently distributed near grain boundaries. The forming of metastable ASS domes at deep cryogenic temperatures is accommodated by both dislocation slip and martensitic transformation. Hence, the strength of metastable ASS thin-walled domes is significantly improved.
Czasopismo
Rocznik
Tom
Strony
art. no. e120, 2024
Opis fizyczny
Bibliogr. 30 poz., rys., wykr.
Twórcy
autor
- School of Mechanical Engineering, Xinjiang University, Urumqi 830017, China
- Post‑Doctoral Research Station of Mechanical Engineering, Xinjiang University, Urumqi 830017, China
autor
- School of Mechanical Engineering, Xinjiang University, Urumqi 830017, China
autor
- School of Mechanical Engineering, Xinjiang University, Urumqi 830017, China
autor
- School of Mechanical Engineering, Xinjiang University, Urumqi 830017, China
autor
- School of Mechanical Engineering, Xinjiang University, Urumqi 830017, China
Bibliografia
- 1. Song GS, Ji KS, Song HW, Zhang SH. Microstructure transformation and twinning mechanism of 304 stainless steel tube during hydraulic bulging. Mater Res Exp. 2019;6:12659.
- 2. Filho IRS, Zilnyk KD, Sandim MJR, Bolmaro RE, Sandim HRZ. Strain partitioning and texture evolution during cold rolling of AISI 201 austenitic stainless steel. Mater Sci Eng. 2017;702:161-72.
- 3. Li JS, Zhou ZC, Wang SZ, Mao QZ, Fang C, Li YS, Wang G, Kang JJ, Zhu XB. Deformation mechanisms and enhanced mechanical properties of 304L stainless steel at liquid nitrogen temperature. Mater Sci Eng. 2020;798: 140133.
- 4. Cheng WJ, Cui DD, Sun YN, Liu W, Xu YF, Liu B. Cryogenic work-hardening behavior for a metastable austenitic stainless steel at liquid nitrogen temperature. Mater Sci Eng. 2022;861: 144352.
- 5. Jayahari L, Balu Naik B, Kumar Singh S. Effect of process parameters and metallographic studies of ASS-304 stainless steel at various temperatures under warm deep drawing. Proc Mater Sci. 2014;6:115-22.
- 6. Liu W, Zhang M, Li JQ, Wu JJ, Meng ZH, Huang SY. Formability of SS304 stainless steel foil at elevated strain-rate. J Mater Res Technol. 2023;26:7471-82.
- 7. Yuan SJ. Fundamentals and processes of fluid pressure forming technology for complex thin-walled components. Engineering. 2021;7:358-66.
- 8. Wang MY, Yan M, Yang CY, Liu Y, Huang HG. A study on the evolution mechanism of small diameter thin-walled stainless steel bellows during a bending process. Eng Fail Anal. 2023;152: 107462.
- 9. Tikhonova M, Belyakov A, Kaibyshev R. Strain-induced grain evolution in an austenitic stainless steel under warm multiple forging. Mater Sci Eng. 2013;564:413-22.
- 10. Mallick P, Tewary NK, Ghosh SK, Chattopadhyay PP. Effect of cryogenic deformation on microstructure and mechanical properties of 304 austenitic stainless steel. Mater Character. 2017;133:77-86.
- 11. Agius D, Kareer A, Mamun AA, Truman C, Collins DM, Mostafavi M, Knowles D. A crystal plasticity model that accounts for grain size effects and slip system interactions on the deformation of austenitic stainless steels. Int J Plast. 2022;152: 103249.
- 12. Zhang HC, Huang CJ, Huang RJ, Li LF. Influence of pre-strain on cryogenic tensile properties of 316LN austenitic stainless steel. Cryog (Guildf). 2020;106: 103058.
- 13. Ding HM, Wu YZ, Lu QJ, Wang YB, Zheng JY, Xu P. A modified stress-strain relation for austenitic stainless steels at cryogenic temperatures. Cryog (Guildf). 2019;101:89-100.
- 14. Wang P, Song ZC, Lin YC, Li QQ, Wang HT. The nucleation mechanism of martensite and its interaction with dislocation dipoles in dual-phase high-entropy alloys. J Alloy Compd. 2022;909: 164685.
- 15. Molnar D, Sun X, Lu S, Li W, Engberg G, Vitos L. Effect of temperature on the stacking fault energy and deformation behaviour in 316L austenitic stainless steel. Mater Sci Eng. 2019;759:490-7.
- 16. Li Y, Zhong SX, Luo H, Xu C, Jia XS. Intermediate stacking fault and twinning induced cooperative strain evolution of dual phase in lean duplex stainless steels with excellent cryogenic strength-ductility combinations. Mater Sci Eng. 2022;831: 142347.
- 17. Koga N, Nameki T, Umezawa O, Tschan V, Weiss KP. Tensile properties and deformation behavior of ferrite and austenite duplex stainless steel at cryogenic temperatures. Mater Sci Eng. 2021;801: 140442.
- 18. Khatami-Hamedani H, Zarei-Hanzaki A, Abedi HR, Anoushe AS, Karjalainen LP. Dynamic restoration of the ferrite and austenite phases during hot compressive deformation of a lean duplex stainless steel. Mater Sci Eng. 2020;788: 139400.
- 19. Hassan MA, Saleh MAE, Takakura N, Ramesh S, Purbolaksono J. Effect of bulge shape on wrinkling formation and strength of stainless steel thin sheet. Mater Des. 2012;42:37-45.
- 20. Liu W, Cheng WJ, Yuan SJ. Analyses on formability and flow stress of an Al-Cu-Mn alloy sheet under biaxial stress at cryogenic temperatures. Int J Mech Sci. 2021;195: 106266.
- 21. Mo C, Xu YC, Yuan SJ. Research on hydroforming of 5A06 aluminum alloy semi-ellipsoid shell with differential thickness. Int J Adv Manuf Technol. 2023;125:603-12.
- 22. Li ZG, Li N, Jiang HW, Xiong YY, Liu L. Deformation texture evolution of pure aluminum sheet under electromagnetic bulging. J Alloy Compd. 2014;589:164-73.
- 23. Chen XM, Lin YC, Wu F. EBSD study of grain growth behavior and annealing twin evolution after full recrystallization in a nickel-based superalloy. J Alloy Compd. 2017;724:198-207.
- 24. Luo Q, Chen H, Chen W, Wang C, Xu W, Li Q. Thermodynamic prediction of martensitic transformation temperature in Fe-Ni-C system. Scr Mater. 2020;187:413-7.
- 25. Zhao GH, Li JC, Zhang RF, Li HY, Li J, Ma LF. Wear behavior of copper containing antibacterial stainless steel in different environmental media and EBSD analysis of its sub surface structure. Mater Character. 2023;197: 112690.
- 26. Hryhorova T, Isaev N, Shumilin S, Zabrodin P, Drozdenko D, Fekete K, Davydenko O. Low temperature plasticity of microcrystalline Al-Li alloy. Mater Sci Eng. 2023;864: 144586.
- 27. Cao FJ, Sun T, Hu JP, Hou WT, Huang GQ, Shen YF, Ma NS, Geng PH, Hu WY, Qu XY. Enhanced mechanical and anticorrosion properties in cryogenic friction stir processed duplex stainless steel. Mater Des. 2023;225: 111492.
- 28. Wang C, Lin X, Wang LL, Zhang SY, Huang WD. Cryogenic mechanical properties of 316L stainless steel fabricated by selective laser melting. Mater Sci Eng. 2021;815: 141317.
- 29. Wu SS, Xin JJ, Xie W, Zhang HC, Huang CJ, Wang W, Zhou ZR, Zhou Y, Li LF. Mechanical properties and microstructure evolution of cryogenic pre-strained 316LN stainless steel. Cryog (Guildf). 2022;121: 103388.
- 30. Zheng Y, Wang F, Li C, Lin Y, Cao R. Effect of martensite structure and carbide precipitates on mechanical properties of Cr-Mo alloy steel with different cooling rate. High Temp. 2019;38:113-24.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-70172ade-a1b9-41f1-928f-004ee1dfcc77
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.