Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The utilization of sediment microbial fuel cell (SMFC) technology presents a paradigm-shifting method for converting the chemical energy obtained from organic and inorganic compounds found in sediment and wastewater substrates into electrical energy. This concept exhibits potential as an environmentally sustainable solution within the future energy sector and presents opportunities for wastewater remediation. This study aims to investigate the influence of anode modification in the SMFC system on generating electrical energy and removing pollutants in landfill leachate. The modification entails synthesizing a nanostructured copper layer on stainless steel (Cu-SS), subsequently compared to the conventional copper (Cu) anode. Results underscore the effectiveness of anode modification, as SMFCs featuring modified anodes exhibit twice the electrical output compared to unmodified counterparts. Modified anode SMFCs yield voltage and current density readings of 615 mV and 17 mA/m2, respectively. In addition to electricity generation, the study delves into the SMFC’s efficacy in nitrogen compound removal. Experimental results unveil the impressive capability of modified anode SMFCs, achieving 81.02% removal of Biological Oxygen Demand (BOD), while unmodified counterparts reach 76.64%. Furthermore, the removal percentages for ammonia, nitrate, and nitrite compounds within SMFCs equipped with modified anodes are 88%, 51%, and 13%, respectively. This comprehensive analysis underscores the multifaceted benefits of anode modification, amplifying electrical output and enhancing the SMFC’s proficiency in nitrogen compound removal, thereby contributing to its potential applications in developing sustainable wastewater treatment and energy generation systems.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
28--37
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
autor
- Postgraduate School of Engineering, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
autor
- Postgraduate School of Engineering, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
- Department of Electrical Engineering, Faculty of Engineering, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
- Postgraduate School of Engineering, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
- Department of Chemical Engineering, Faculty of Engineering, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
autor
- Department of Chemical Engineering, Faculty of Engineering, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
autor
- Postgraduate School of Engineering, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
- Department of Chemical Engineering, Faculty of Engineering, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
autor
- Department of Chemical Engineering, Faculty of Engineering, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
Bibliografia
- 1. Abbas, S.Z., Rafatullah, M., Ismail, N. Syakir, M.I. 2017. A review on sediment microbial fuel cells as a new source of sustainable energy and heavy metal remediation: mechanisms and future prospective. Int J Energy Res, 41(9), 1242–1264. https://10.1002/er.3706
- 2. Ajab, H., Isa, M.H. Yaqub, A. 2020. Electrochemical oxidation using Ti/RuO2 anode for COD and PAHs removal from aqueous solution. Sustainable Mater. Technol., 26, 1–7. https://10.1016/j.susmat.2020.e00225
- 3. Al-Dawery, S.K., Annamareddy, S.H.K., Al-Mashhadani, M.K.H., Al-Abri, H.A. Al-Hatmi, F.H. 2021. Parametric study for optimization of sediment-type microbial fuel cell. Int. J. Environ. Sci. Technol., 18(5), 1097–1108. https://10.1007/s13762-021-03236-y
- 4. Apollon, W., Rusyn, I., González-Gamboa, N., Kuleshova, T., Luna-Maldonado, A.I., Vidales-Contreras, J.A. Kamaraj, S.K. 2022. Improvement of zero waste sustainable recovery using microbial energy generation systems: A comprehensive review. Sci. Total Environ., 817, 1–22. https://10.1016/j.scitotenv.2022.153055
- 5. Emalya, N., Berutu, R. Munawar, E. Simultaneous landfill leachate treatment and electricity production by sediment microbial fuel cell. IOP Conf. Ser.: Earth Environ. Sci., 2022. 1–7.
- 6. Emalya, N., Munawar, E., Suhendrayatna, S., Fathanah, U. Yunardi, Y. An overview of recent advances in sediment microbial fuel cells for wastewater treatment and energy production. IOP Conf. Ser.: Earth Environ Sci, 2021. 1–6.
- 7. Emalya, N., Yunardi, Y., Munawar, E., Suhendrayatna, S. Tarmizi, T. 2023. Synergistic removal of organic and nutrients from landfill leachate using photobioreactor-cultivated microalgae-bacteria consortium. Global Journal of Environmental Science and Management. https://10.22034/gjesm.2024.02.21
- 8. Ghimire, U., Jang, M., Jung, S.P., Park, D., Park, S.J., Yu, H. Oh, S.E. 2019. Electrochemical removal of ammonium nitrogen and cod of domestic wastewater using platinum coated titanium as an anode electrode. Energies, 12(5), 1–13. https://10.3390/en12050883
- 9. Goleij, E., Ghafouri Taleghani, H. Lashkenari, M.S. 2021. Modified carbon cloth flexible electrode with ternary nanocomposite for high performance sediment microbial fuel cell. Mater. Chem. Phys., 272, 1–9. https://10.1016/j.matchemphys.2021.124961
- 10. Gul, H., Raza, W., Lee, J., Azam, M., Ashraf, M., Kim, K.H. 2021. Progress in microbial fuel cell technology for wastewater treatment and energy harvesting. Chemosphere, 281, 1–12. https://10.1016/j.chemosphere.2021.130828
- 11. Haque, N., Cho, D. Kwon, S. Characteristics of electricity production by metallic and nonmetallic anodes immersed in mud Sediment using Sediment microbial fuel cell. 7th International Conference on Cooling and Heating Technologies, ICCHT 2014, 2015. 363–367.
- 12. Haynes, W.M., Lide, D.R. Bruno, T.J. 2014. Handbook of Chemistry and Physics. CRC Press, Boca Raton, London, New York.
- 13. Lawan, J., Wichai, S., Chuaypen, C., Nuiyen, A. Phenrat, T. 2022. Constructed sediment microbial fuel cell for treatment of fat, oil, grease (FOG) trap effluent: Role of anode and cathode chamber amendment, electrode selection, and scalability. Chemosphere, 286, 1–12. https://10.1016/j.chemosphere.2021.131619
- 14. Liang, Y., Zhai, H., Liu, B., Ji, M. Li, J. 2020. Carbon nanomaterial-modified graphite felt as an anode enhanced the power production and polycyclic aromatic hydrocarbon removal in sediment microbial fuel cells. Sci. Total Environ., 713, 1–9. https://10.1016/j.scitotenv.2019.136483
- 15. Logan, B.E. Rabaey, K. 2012. Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies. Science, 337(6095), 686–690. https://10.1126/science.1217412
- 16. Luo, J., Chi, M., Wang, H., He, H. Zhou, M. 2013. Electrochemical surface modification of carbon mesh anode to improve the performance of air-cathode microbial fuel cells. Bioprocess and iosystems Engineering, 36(12), 1889–1896. https://10.1007/s00449-013-0963-x
- 17. Morovati, R., Hoseini, M., Azhdarpoor, A., Dehghani, M., Baghapour, M.A. Yousefinejad, S. 2022. Removal of Diclofenac Sodium from Wastewater in Microbial Fuel Cell by Anode Modified with MnCo2O4. Sustainability, 14(21), 1–17. https://10.3390/su142113907
- 18. Nosek, D., Cydzik-Kwiatkowska, A. 2022. Anode Modification with Reduced Graphene Oxide–Iron Oxide Improves Electricity Generation in Microbial Fuel Cell. Journal of Ecological Engineering, 23(10), 147–153. https://10.12911/22998993/152440
- 19. Prasad, J. Tripathi, R.K. Maximum electricity generation from low cost sediment microbial fuel cell using copper and zinc electrodes. ICICIC, 17–19 Aug. 2017 2017. 1–4.
- 20. Sahu, O. 2019. Sustainable and clean treatment of industrial wastewater with microbial fuel cell. Results Eng., 4, 1–7. https://10.1016/j.rineng.2019.100053
- 21. Santoro, C., Arbizzani, C., Erable, B. Ieropoulos, I. 2017. Microbial fuel cells: From fundamentals to applications. A review. J Power Sources, 356, 225–244. https://10.1016/j.jpowsour.2017.03.109
- 22. Sayed, E.T., Alawadhi, H., Elsaid, K., Olabi, A.G., Almakrani, M.A., Bin Tamim, S.T., Alafranji, G.H.M. Abdelkareem, M.A. 2020. A carbon-cloth anode electroplated with iron nanostructure for microbial fuel cell operated with real wastewater. Sustainability, 12(16), 1–11. https://10.3390/su12166538
- 23. Shen, S., Li, X., Dai, Z. Lu, X. 2022. Floating treatment wetland integrated with sediment microbial fuel cell for low-strength surface water treatment. J. Cleaner Prod., 374, 1–12. https://10.1016/j.jclepro.2022.134002
- 24. Song, T.S., Wu, X.Y. Zhou, C.C. 2013. Electrophoretic deposition of multi-walled carbon nanotube on a stainless steel electrode for use in sediment microbial fuel cells. Applied Biochemistry and Biotechnology, 170(5), 1241–1250. https://10.1007/s12010-013-0274-3
- 25. Taşkan, B., Bakır, M. Taşkan, E. 2021. Enhanced power generation from algal biomass using multi-anode membrane-less sediment microbial fuel cell. Int. J Energy Res., 45(2), 2011–2022. https://10.1002/er.5894
- 26. Tominaga, M., Ohmura, K., Ototani, S. Darmawan, R. 2022. Accelerating electricity power generation and shortening incubation period of microbial fuel cell operated in tidal flat sediment by artificial surfactant anode modification. Biochem. Eng. J., 185, 1–7. https://10.1016/j.bej.2022.108536
- 27.Tran, T.V., Lee, I.C. Kim, K. 2019. Electricity production characterization of a Sediment Microbial Fuel Cell using different thermo-treated flat carbon cloth electrodes. Int J Hydrogen Energy, 44(60), 32192–32200. https://10.1016/j.ijhydene.2019.10.076
- 28. Yang, J., Zhao, Y.G., Liu, X. Fu, Y. 2022. Anode modification of sediment microbial fuel cells (SMFC) towards bioremediating mariculture wastewater. Mar. Pollut. Bull., 182, 1–10. https://10.1016/j.marpolbul.2022.114013
- 29. Zhang, H., Fu, Y., Zhou, C., Liu, S., Zhao, M., Chen, T. Zai, X. 2018. A novel anode modified by 1,5-dihy-droxyanthraquinone/multiwalled carbon nanotubes composite in marine sediment microbial fuel cell and its electrochemical performance. Int. J Energy Res., 42(7), 2574–2582. https://10.1002/er.4034
- 30. Zhao, Q., Ji, M., Cao, H. Li, Y. 2020. Recent advances in sediment microbial fuel cells. IOP Conf. Ser.: Earth Environ. Sci, 621, 1–6. https://10.1088/1755-1315/621/1/012010
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7014d632-ecd5-406b-8637-8aac29aa91bb