PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Research on the Agrophysical State of Podzolized Black Soil under Different Transitions to "No-Till" Treatment in Agrocenosis

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The performance of the No-till treatment after systematic surface tillage with crop rotation allowed the formation of stocks of productive moisture at the average level of 155 mm, which corresponded to the stocks of moisture after ploughing and were significantly higher (by 10–15 mm) than those under systematic surface tillage and No-till treatment after the ploughing. During the April-June and June-July periods, ploughing consumed 67% and 33% of the spring moisture supply, respectively; after surface tillage it was 62% and 38%, while after No-till following surface tillage it was 55% and 45%. This indicates a more optimal use of productive moisture stocks compared to ploughing, where moisture was used 1.2 times more intensively during the vegetative growth phase of grain and leguminous crops in the crop rotation. The highest consumption of productive water stocks during the April-July period was during ploughing at 62–69 mm and during surface tillage and No-till after surface tillage at 47–48 mm, which is 1.4 times less. The content of water-resistant aggregates 5–1 mm in 0–30 cm layer of soil under tillage was 3.31%, whereas under surface tillage and No-till treatment in different combinations – 1.87–2.21 times more. Increasing the content of water-resistant aggregates of the most valuable size, with increasing of humus content in 0–20 cm layer of soil by 0.07% under surface tillage and No-till treatment on its background led to improvement of crop moisture regime in agrocenosis by 10–15%.
Rocznik
Strony
290--304
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
  • National University of Life and Environmental Sciences of Ukraine, 15, Heroyiv Oborony Str., Kyiv, UA 03041, Ukraine
  • National Academy of Agrarian Sciences of Ukraine, 9, Mykhailo Omelyanovych-Pavlenko Str., Kyiv, UA 01010, Ukraine
  • Cherkasy State Agricultural Experimental Station National Scientific Centre, Institute of Agriculture of NAAS of Ukraine, Ukraine
  • Panfil Research Station of the National Research Center «Institute of Agriculture of the National Academy of Agrarian Sciences of Ukraine» Ukraine, 07750, Kyiv region, Yagotinsky district, Panfili village, Tsentralna street, building 2, Ukraine
  • State Publishing House «Agrarian Science» of the National Academy of Agrarian Sciences of Ukraine; Mykhaila Omelianovycha-Pavlenka St, 9, Kyiv, 01010, Ukraine
  • Angel Kanchev, University of Ruse, 8, Studentska Str., POB 7017 Ruse, Bulgaria
  • Latvia University of Life Sciences and Technologies, 2, Liela str., Jelgava, LV-3001, Latvia
  • Lublin University of Technology, ul. Nadbystrzycka 38 D, 20–618 Lublin, Poland
Bibliografia
  • 1. Medvedev V.V., Bulygin S.Yu., Bulygina M.E. 2017. Modern farming systems and the problem of soil cultivation. Agroecological journal, 2, 127–134.
  • 2. Medvedev V.V. 2014. Unresolved problems of soil cultivation in Ukraine. Agrochemistry and soil science. Interved. topics. Sat. B. 81, 5–16.
  • 3. Derpsch R. 2008. Critical Steps to No-till Adoption, In: No-till Farming Systems. Goddard T., Zoebisch M.A., Gan Y., Ellis W., Watson A., Sombatpanit S., Eds., WASWC, 479–495.
  • 4. Shikula M.K., Demidenko A.V. 2004. The impact of minimal tillage on the fertility of chernozem. Bulletin of agrarian science, 8, 18–23.
  • 5. Shikula M.K., Demidenko A.V. 2005. Cultural soil formation with minimal tillage. Scientific Bulletin of NAU, 81, 107–117.
  • 6. Kiryushin V.I. 2006. Minimization of tillage: prospects and contradictions. Agriculture, 5, 12–14.
  • 7. Kosolap M.P., Krotinov O.P. 2011. No-till farming system: A tutorial. Kyiv: Logos, 352.
  • 8. Medvedev V.V. 2010. Zero tillage in European countries. H.: Gorpechat, 202.
  • 9. Thorne M.E., Young F.L., Pan W.L., Bafus R., Alldredge J.R. 2003. No-till spring cereal cropping system reduce wind erosion susceptibility in wheat/fallow region of the Pacific Northwest. Journal Soil and Water Conservation Society, 58(5), 250–257.
  • 10. Tiscareño-López M., Velásquez-Valle M., Salinas-Garcia J., Báez-González A.D. 2004. Nitrogen and Organic matter losses in No-till corn cropping system. Journal of the Am. Water Resources Association, 40, 401–408.
  • 11. Rodrigo S. Nicoloso, Charles W. Rice. 2021. Intensification of no-till agricultural systems: An opportunity for carbon sequestration. Soil Science Society of America Journal, 85(5), September/October, 1395–1409.
  • 12. Sanderman J., Hengl T., Fiske G.J. 2017. Soil carbon debt of 12,000 years of human land use. Proceedings of the National Academy of Sciences, 114, 9575–9580.
  • 13. Lal R. 2010. Depletion and restoration of carbon in the pedosphere. Japanese Society of Pedology, 53, 19–32.
  • 14. Nunes A. L. P., Bartz M.L., Mello I. et al. 2020. No-till system participatory quality index in land management quality assessment in Brazil. European Journal of Soil Science, 71, 974–987.
  • 15. Angers D. A., Eriksen-Hamel N. S. 2008. Full-Inversion Tillage and Organic Carbon Distribution in Soil Profiles: A Meta-Analysis. Soil Science Society of America Journal, 72(5), September, 1370–1374.
  • 16. Baker J. M., Ochsner T.E., Venterea R.T. 2007. Tillage and soil carbon sequestration: What do we really know? Agriculture Ecosystems and Environment, 118, 1–5.
  • 17. Dietzel R., Liebman M. & Archontoulis S. 2017. A deeper look at the relationship between root carbon pools and the vertical distribution of the soil carbon pool. Soil, 3, 139–157.
  • 18. Wuaden C.R., Nicoloso R.S., Barros E.C. et al. 2020. Early adoption of no-till mitigates soil organic carbon and nitrogen losses due to land use change. Soil and Tillage Research, 204, Article 104728.
  • 19. Melero S., López-Garrido R., Murillo José M., Moreno Félix. 2009. Conservation tillage: Short- and long-term effects on soil carbon fractions and enzymatic activities under Mediterranean conditions. Soil and Tillage Research, 104(2), 292–298.
  • 20. Derpsch R. 2008. Critical Steps to No-till Adoption, In: No-till Farming Systems. Goddard T., Zoebisch M.A., Gan Y., Ellis W., Watson A. and Sombatpanit S. WASWC, 479–495.
  • 21. Duiker S., Myers J.C. 2005. Steps Towards a Successful Transition to No-till. Coll. Agric. Sci., Agric. Res Coop. Ext., Penn State Univ., 36.
  • 22. Landers J.N. 1999. How and why the Brazilian Zero Tillage explosion occurred. International Soil Conservation Organization, 1–20.
  • 23. Moyer J. 2011. Organic No-till Farming. Advancing No-till agriculture. Crops, Soil, Еquipment, Acres, 204.
  • 24. Baker C.J., Saxton K.E., Ritchie W.R. 2007. No-tillage Seeding in Conservation Agriculture – 2nd Edn. CABI and FAO, Rome, 326.
  • 25. Medvedev V.V. 2013. The latest technologies and tillage tools to preserve the physical properties of soils. Bulletin of agrarian science, 8, 5–10.
  • 26. Demidenko O.V., Shikula M.K. 2007. Strengthening of facies humus accumulation of chernozems in agrocenoses. Bulletin of agrarian science, 1, 16–21.
  • 27. Demidenko O.V., Velichko V.A. 2013. Management of facial humus accumulation of chernozems in agrocenoses of the Forest-Steppe and Steppe of Ukraine. Bulletin of agrarian science, 4, 54–59.
  • 28. Demidenko E.V. 2008. Agrophysical conditions of soil formation of chernozems in agrocenoses. Bulletin of the Cherkassy Institute of Agro-Industrial Production. Interved. subject. Collection, 8, 164–175.
  • 29. Demidenko O.V., Velichko V.A. 2013. Agrophysical conditions of soil formation of chernozems in agrocenoses. Bulletin of agrarian science, 2, 14–19.
  • 30. Demidenko O.V., Shikula M.K. 2001. Self-regulation of chernozem fertility in conservation agriculture. Agrochemistry and soil science. Interved. subject. Sat., 61, 58–65.
  • 31. Demidenko A.V. 2004. Self-regulation of the agrophysical state of chernozem in conservation agriculture. Bulletin of the National University of Water Resources and Nature Management, 3(27), 49–54.
  • 32. Demidenko O.V., Shikula M.K. 2006. The time factor and the reproduction of the fertility of chernozems in agrocenoses. Bulletin of agrarian science, 9, 13–16.
  • 33. Demidenko A.V. 2021. Agrophysical state as a criterion for the readiness of podzolized chernozem to minimize tillage in agrocenosis. Bulletin of agrarian science, 7, 15–23.
  • 34. Krylach S.I. 2022. Model of the optimal agrophysical parameters of the sowing soil layer. Bulletin of agrarian science, 3, 13–20.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-70105755-907e-4eaf-99c8-14a5308d28c5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.