PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Reservoir surface water area variations change research using Sentinel 2 MSI data. A case study in Dak Lak province, Central Highlands (Vietnam)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Agriculture is one of the most important economic sectors in Vietnam, however, in recent times, agricultural production has been negatively affected by drought, reducing crop productivity and quality. Due to the effects of climate change, drought occurs in most regions of the country with varying degrees and duration, seriously affecting water resources and agricultural production. Particularly for the Central Highlands region, drought is a natural disaster with the most negative impacts on life and production. This paper presents the results of monitoring the changes in water surface area of some reservoirs in Dak Lak province in the dry season in early 2020 from Sentinel 2 data. The MNDWI index calculated from green and NIR band of Sentinel 2 images is used to extract surface water, and thereby evaluating the change in surface water area of the reservoirs. The obtained results show a very strong decrease in water surface area of reservoirs in Dak Lak due to the influence of drought. The water surface area of Ea Sup Thuong Lake decreased about 6 times at the end of the dry season (May 2020) compared to the period of January 2020. The water surface area of Ea Uy Lake decreased about 4 times, while with the Krong Buk Ha Lake, the decrease in water surface area was lower, reaching about 28% compared to the beginning of the dry season. The results obtained in the study provide timely information to help managers effectively respond to the effects of drought on water resources.
Rocznik
Strony
art. no. e56, 2024
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
  • Le Quy Don Technical University, Hanoi, Vietnam
  • Hanoi University of Natural Resources and Environment, Hanoi, Vietnam
  • Le Quy Don Technical University, Hanoi, Vietnam
Bibliografia
  • 1. Alesheikh, A., Ghorbanali, A., and Nouri, N. (2007). Coastline change detection using remote sensing. Int. J. Environ. Sci. Tech., 4(1), 61–66. DOI: 10.1007/BF03325962.
  • 2. Chen, Z., and Zhao, S. (2022). Automatic monitoring of surface water dynamics using Sentinel-1 and Sentinel-2 data with Google Earth Engine. Int. J. Appl. Earth Obs. Geoinf., 103010. DOI:10.1016/j.jag.2022.103010.
  • 3. Do, T.N.A., Nguyen, Q.P., and Nguyen, H.S. (2017). Research methods agricutural drought warning in downstream of Ca River. J. Wat. Resour. Environ. Eng., 56, 24–33.
  • 4. Duong, V.K., Nguyen, H.Q., Tran, T.T. et al. (2013). Application of remote sensing technology to assess the severity of drought in Central coastal area of Vietnam. Vietnam J. Hydrometeo., 2, 26–32.
  • 5. Feyisa, G., Meiby, H., Fensholt, R. et al. (2014). Automated water extraction index: A new technique for surface water mapping using Landsat imagery. Remote Sens. Environ., 140, 23–35. DOI:10.1016/j.rse.2013.08.029.
  • 6. Gao, B.C. (1996). NDWI – A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ., 58, 257–266. DOI: 10.1016/S0034-4257(96)00067-3.
  • 7. Govender, M., Chetty, K., and Bulcock, H. (2007). A review of hyperspectral remote sensing and its application in vegetation and water resource studies. Wat., 33(2), DOI: 10.4314/wsa.v33i2.49049.
  • 8. Hawkins, D.M. (2004). The problem of overfitting. J. Chem. Inf. Comp. Sci., 44(1), 1–12. DOI:10.1021/ci0342472.
  • 9. Huang, W., DeVries, B., Huang, C. et al. (2018). Automated Extraction of Surface Water Extent from Sentinel-1 Data. Remote Sens. 10, 797. DOI: 10.3390/rs10050797.
  • 10. Ishikawa-Ishiwata, Y., and Furuya, J. (2022). Economic evaluation and climate change adaptation measures for rice production in Vietnam using a supply and demand model: special emphasis on the Mekong River delta region in Vietnam. In: Ito T., Tamura M., Kotera A., Ishikawa-Ishiwata Y. (eds) Interlocal Adaptations to Climate Change in East and Southeast Asia. SpringerBriefs in Climate Studies, Springer: Cham. DOI: 10.1007/978-3-030-81207-2_4.
  • 11. Kim, D., Moon, W., Kim, G. et al. (2011). Submarine groundwater discharge in tidal flats revealed by space-borne synthetic aperture radar. Remote Sens. Environ., 115(2), 793–800. DOI:10.1016/j.rse.2010.11.009.
  • 12. Klemas, V. (2009). The role of remote sensing in predicting and determining coastal storm impacts. J. Coast. Res., 25(6), 1264–1275. DOI: 10.2112/08-1146.1.
  • 13. Le, T., Sun, C., Choy, S. et al. (2021). Regional drought risk assessment in the Central Highlands and the South of Vietnam. Geomat. Nat. Haz. Risk, 12(1), 3140–3159. DOI: 10.1080/19475705.2021.1998232.
  • 14. Liu, Y., Wang X., Ling F. et al. (2017). Analysis of coastline extraction from Landsat-8 OLI imagery. Wat., 9(11), 816. DOI: 10.3390/w9110816.
  • 15. Lu, X., Yang, K., Lu, Y. et al. (2020). Small Arctic rivers mapped from Sentinel-2 satellite imagery and ArcticDEM. J. Hydro., 584, 124689. DOI: 10.1016/j.jhydrol.2020.124689.
  • 16. McFeeters, S.K. (1996). The use of normalized difference water index (NDWI) in the delineation of open water features. Int. J. Remote Sens., 17, 1425–1432. DOI: 10.1080/01431169608948714.
  • 17. Nguyen, V.T., and Nguyen, V.K. (2016). Monitoring coastline changes using landsat multi-temporal data in the Cua Dai estuary, Thu Bon River, Quang Nam. J. Mining Earth Sci., 57, 81–89.
  • 18. Pekel, J.F., Cottam, A., Gorelick, N., Belward, A.S. (2016). High-resolution mapping of global surface water and its long-term changes. Nat., 540 (7633), 418–422. DOI: 10.1038/nature20584.
  • 19. Phan, K.D., Vo, Q.M., Nguyen, T.H.D. et al. (2013). Evaluation of landslide and accretion in coastal areas of Ca Mau and Bac Lieu provinces from 1995 to 2010 using remote sensing and GIS technology. Can Tho Uninersity J. Sci., 26, 35–43.
  • 20. Schmidt-Thome, P., Nguyen, T.H., Pham, T.L. et al. (2014). Climate change adaptation measures in Vietnam, Development and Implementation. SpringerBriefs in Earth Sci. DOI: 10.1007/978-3-319-12346-2.
  • 21. Shen, L., and Li, C. (2010). Water body extraction from Landsat ETM+ imagery using adaboost algorithm. In Proceedings of the 18th International Conference on Geoinformatics, Beijing, China, 18-20 June 2010, 1–4.
  • 22. Thenkabail, P.S., Gamage, M.S., and Smakhtin, V.U. (2004). The use of remote sensing data for drought assessment and monitoring in southwest Asia. Res. Rep., 85, International Water Management Institute, 34.
  • 23. Trinh, L.H., and Vu, D.T. (2019). Application of remote sensing technique for drought assessment based on normalized difference drought index, a case study of Bac Binh district, Binh Thuan province (Vietnam). Russian J. Earth Sci., 19, ES2003, 1–9. DOI: 10.2205/2018ES000647.
  • 24. Trinh, L.H., Le, T.G., Kieu, V.H. et al. (2020). Application of remote sensing technique for shoreline change detection in Ninh Binh and Nam Dinh provinces (Vietnam) during the period 1988 to 2018 based on water indices. Russian J. Earth Sci., 20, ES2004, 1–15. DOI: 10.2205/2020ES000686.
  • 25. Vanderhoof, M.K., Lane, C.R., McManus, M.G. et al. (2018). Wetlands inform how climate extremes influence surface water expansion and contraction. Hydrol. Earth Syst. Sci., 22(3), 1851–1873. DOI:10.5194/hess-22-1851-2018.
  • 26. Vu, T.H., Ngo, D.T., and Phan, V.T. (2014). Evolution of meteorological drought characteristics in Vietnam during the 1961–2007 period. Theor. Appl. Clim., 118, 367–375. DOI: 10.1007/s00704-013-1073-z.
  • 27. Winarso, G., and Budhiman, S. (2001). The potential application of remote sensing data for coastal study. In Proc. 22nd. Asian Conference on Remote Sensing, Singapore.
  • 28. Xiao, X., Boles, S., Frolking, S. et al. (2002). Observation of flooding and rice transplanting of paddy rice fields at the site to landscape scales in China using VEGETATION sensor data. Int. J. Remote Sens., 23(15), 3009–3022. DOI: 10.1080/01431160110107734.
  • 29. Xu, H. (2006). Modification of normalized difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens., 27(14), 3025–3033. DOI:10.1080/01431160600589179.
  • 30. Zhai, K., Wu, X., Qin, Y., Du, P. et al. (2015). Comparison of surface water extraction performances of different classic water indices using OLI and TM imageries in different situations. Geospatial Inf. Sci., 18(1), 32–42. DOI: 10.1080/10095020.2015.1017911.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-700e55d6-7d74-483c-b66a-6b217d1e28c0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.