PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Thermal history of the Carboniferous strata in the northern part of the Intra-Sudetic Basin (SW Poland): a combined Raman spectroscopy and organic petrography study

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Raman spectroscopy and vitrinite reflectance measurements of dispersed organic matter from Carboniferous shales in boreholes in the northern part of the Intra-Sudetic Basin were used for thermal history reconstruction. Microscopic investigations have shown that the organic matter is dominated by the vitrinite maceral group. In analysed samples, organic matter shows a varied degree of thermal alteration determined by the mean random vitrinite reflectance (VRo) ranging from 0.72% to 3.80%. Mean apparent maximum vitrinite reflectance (R’max) values reached 4.98%. The full width at half maximum of D1 and G bands in Raman spectra are well-correlated with mean VRo and R’max. Thermal maturity in the boreholes shows a regular increase with depth. Geological data combined with Raman spectroscopy and mean vitrinite reflectance results indicate that the analysed Carboniferous strata reached maximum paleotemperatures from c. 110 to c. 265°C. The regional paleogeothermal gradient in the late Paleozoic was c. 80°C/km. The Variscan heating event presumably caused a major coalification process of organic matter. The Carboniferous–Permian magmatic activity must have contributed to high heat flow, adding to the effect of sedimentary burial on the thermal maturity.
Rocznik
Strony
363--396
Opis fizyczny
Bibliogr. 147 poz., rys., tab., wykr.
Twórcy
  • AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection, 30-059 Kraków, al. Mickiewicza 30, Poland
  • AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection, 30-059 Kraków, al. Mickiewicza 30, Poland
  • AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection, 30-059 Kraków, al. Mickiewicza 30, Poland
Bibliografia
  • 1. Adamczyk, Z., Kokowska-Pawłowska, M., Komorek, J., Klupa, A., Lewandowska, M. and Nowak, J. 2018. The impact of a Neogene basalt intrusion on the optical properties and internal structure of the dispersed organic matter in Carboniferous strata (SW-part USCB). Acta Geologica Polonica, 68 (2), 249-262.
  • 2. American Society For Testing and Materials (ASTM) 2011. Standard test method for microscopical determination of the reflectance of vitrinite dispersed in sedimentary rocks: West Conshohocken, PA. ASTM International - Annual book of ASTM standards: Petroleum products, lubricants, and fossil fuels; Gaseous fuels; coal and coke, sec. 5, v. 5.06, No D7708-11, 823-830.
  • 3. Allen, P.A. and Allen, J.R. 1990. Basin Analysis. Principles & Applications. 451 pp. Blackwell Scientific, Oxford.
  • 4. Aoya, M., Kouketsu, Y., Endo, S., Shimizu, H., Mizukami, T., Nakamura, D. and Wallis, S. 2010. Extending the applicability of the Raman carbonaceous material geothermometer using data from contact metamorphic rocks. Journal of Metamorphic Geology, 28, 895-914.
  • 5. Aramowicz, A., Anczkiewicz, A.A. and Mazur, S. 2006. Fission track dating of apatites from the Góry Sowie Massif, Polish Sudetes, NE Bohemian Massif: Implications of post-Variscan denudation and uplift. Neues Jahrbuch für Mineralogie Abhandlungen, 182, 221-229.
  • 6. Awdankiewicz, M. 1999a. Volcanism in a late Variscan intramontane trough: Carboniferous and Permian volcanic centres of the Intra-Sudetic Basin, SW Poland. Geologia Sudetica, 32, 13-47.
  • 7. Awdankiewicz, M. 1999b. Volcanism in a late Variscan intra-montane trough: the petrology and geochemistry of the Carboniferous and Permian volcanic rocks of the Intra-Sudetic Basin, SW Poland. Geologia Sudetica, 32, 83-111.
  • 8. Awdankiewicz, M. 2004. Sedimentation, volcanism and subvolcanic intrusions in a late Palaeozoic intramontane trough (the Intra-Sudetic Basin, SW Poland). Geological Society, London, Special Publications, 234, 5-11.
  • 9. Barker, C. and Pawlewicz, M.J. 1994. Calculation of vitrinite reflectance from thermal histories: a comparison of methods. In: Mukhopadhyay, P.K. and Dow, W.G. (Eds), Vitrinite reflectance as a maturity parameter: applications and limitations, 216-229. American Chemical Society Symposium Series; Washington D.C.
  • 10. Beny-Bassez, C. and Rouzaud, J.N. 1985. Characterisation of carbonaceous materials by correlated electron and optical microscopy and Raman microspectrometry. Scanning Electron Microscopy, 1, 119-132.
  • 11. Beyssac, O, Goffe, B., Chopin, C. and Rouzaud, J.N. 2002a. Raman spectra of carbonaceous material in metasediments: a new geothermometer. Journal of Metamorphic Geology,20, 858-871.
  • 12. Beyssac, O., Rouzaud, J. N., Goffé, B., Brunet, F. and Chopin, C. 2002b. Graphitization in a high-pressure, low-temperature metamorphic gradient: A Raman microspectroscopy and HRTEM study. Contributions to Mineralogy and Petrology, 143, 19-31.
  • 13. Beyssac, O., Brunet, F., Petitet, J., Goffé, B. and Rouzaud, J.N. 2003a. Experimental study of the microtextural and structural transformations of carbonaceous materials under pressure and temperature. European Journal of Mineralogy, 15, 937-951.
  • 14. Beyssac, O., Goffe, B., Petitet, J.P., Froigneux, E., Moreau, M. and Rouzaud, J.N. 2003b. On the characterization of disordered and heterogeneous carbonaceous materials by Raman spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 59, 2267-2276.
  • 15. Birkenmajer, K., Pécskay, Z., Grabowski, J., Lorenc, M.W. and Zagożdżon, P.P. 2004. Radiometric dating of the Tertiary volcanics in Lower Silesia, Poland. IV. Further K-Ar and palaeomagnetic data from Late Oligocene to Early Miocene basaltic rocks of the Fore-Sudetic Block. Annales Societatis Geologorum Poloniae, 74, 1-19.
  • 16. Bossowski, A. and Ihnatowicz, A. 1994. Palaeogeography of the Upper Carboniferous coal-bearing deposits in NE part of the Intra-Sudetic Depression. Geological Quarterly, 38, 231-248.
  • 17. Bossowski, A. and Ihnatowicz, A. 2006. Geological Atlas of the Lower Silesian Coal Basin. Państwowy Instytut Geologiczny; Warsaw.
  • 18. Botor, D. 2008. Thermal history of the coal-bearing Carboniferous rocks in the Wałbrzych district (Lower Silesia Coal Basin, Poland) constrained by numerical maturity modelling - a preliminary results. Conference Proceedings: Górnictwo Zrównoważonego Rozwoju. Gliwice, 20-21.11.2008. Zeszyty Naukowe Politechniki Śląskiej, 286, 15-24. [In Polish with English summary]
  • 19. Botor, D., Toboła, T. and Jelonek, I. 2017a. Thermal history of the lower Carboniferous Culm Basin in the Nízký Jeseník Mts. (NE Bohemian Massif, Czech Republic and Poland). Annales Societatis Geologorum Poloniae,87, 13-40.
  • 20. Botor, D., Dunkl, I., Anczkiewicz, A.A. and Mazur, S. 2017b. Post-Variscan thermal history of the Moravo-Silesian lower Carboniferous Culm Basin (NE Czech Republic - SW Poland). Tectonophysics, 712-713, 643-662.
  • 21. Botor, D., Anczkiewicz, A.A. Mazur, S. and Siwecki, T. 2019. Post-Variscan thermal history of the Intra-Sudetic Basin (Sudetes, Bohemian Massif) based on apatite fission track analysis. International Journal of Earth Sciences (formerly Geologische Rundschau), 108, 2561-2576.
  • 22. Bruns, B. and Littke, R. 2015. Lithological dependency and anisotropy of vitrinite reflectance in high rank sedimentary rocks of the Ibbenbüren area, NW-Germany: Implications for the tectonic and thermal evolution of the Lower Saxony Basin. International Journal of Coal Geology, 137, 124-135.
  • 23. Bruszewska, B. 2000. The geothermal conditions in Lower Silesia (SW Poland). Przegląd Geologiczny, 48, 639-643. [In Polish with English summary]
  • 24. Carr, A.D. and Williamson P. 1990. The relationship between aromaticity, vitrinite reflectance and maceral composition of coals: Implications for the use of vitrinite reflectance as a maturation parameter. Organic Geochemistry, 16, 313-323.
  • 25. Čermak, V. 1968. Heat flow in the Žacler-Svatonovice Basin. Acta Geophysica Polonica, 16, 3-9.
  • 26. Damberger, H.H. 1971. Coalification pattern of the Illinois Basin. Economic Geology, 66, 488-494.
  • 27. Danišík, M., Štěpančiková, P. and Evans, N.J. 2012. Constraining long-term denudation and faulting history in intraplate regions by multi-system thermochronology - an example of the Sudetic Marginal Fault (Bohemian Massif, Central Europe). Tectonics, 31, 1-19.
  • 28. Diessel, C.F.K. and Mchugh, F.A. 1986. Fluoresznezintensitaet und Reflexionsvermoegen von Vitriniten und Inertiniten zur Kennzeichnung des Verkokungsverhaltens. Glueckauf Forschungshungs, 47, 60-70.
  • 29. Dvořák, J. 1989. Anchimetamorphism in the Variscan tectogene in Central Europe - its relationship to tectogenesis. Vstník Ústredního Ústavu Geologického, 64, 17-30 [in Czech with English abstract]
  • 30. Dziedzic, K. 1965. Origin of Carboniferous basins on the Gabbro-diabase Nowa Ruda Massif. Kwartalnik Geologiczny, 9, 551-564. [In Polish with English summary]
  • 31. Dziedzic, K. 1970. Tectonics of the Carboniferous deposits in the north-eastern part of the Nowa Ruda Coal Basin, Sudetes. Acta Geologica Polonica, 20 (1), 177-193.
  • 32. Dziedzic, K. 1971. Sedimentation and paleogeography of the Upper Carboniferous deposits in the Intra-Sudetic depression. Geologia Sudetica, 5, 7-75. [In Polish with English summary]
  • 33. Dziedzic, K. and Teisseyre, A.K. 1990. The Hercynian mollase and younger deposits in the Intra-Sudetic Basin, SW Poland. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 197, 285-305.
  • 34. England, T.D.J. and Bustin, R.M. 1986. Thermal maturation of the western Canadian sedimentary basin south Red Deer River - Alberta plains. Bulletin of Canadian Petroleum Geology, 34, 71-90.
  • 35. Facer, R.A., Cook, A.C. and Beck, A.E. 1980. Thermal properties and coal rank in rocks and coal seams of the southern Sydney Basin, New South Wales: A paleogeothermal explanation of coalification. International Journal of Coal Geology, 1, 1-17.
  • 36. Ferrari, A.C. and Robertson, J. 2000. Interpretation of Raman spectra of disordered and amorphous carbon. Physical Review B, 61, 95-107.
  • 37. Franke, W. 1989. Tectonostratigraphic units in the Variscan belt of the Central Europe. Geological Society American Special Papers, 230, 67-90.
  • 38. Friedel, C.H., Hoth, P., Franz, G. and Stedingk, K. 1995. Niedriggradige Regionalmetamorphose im Harz. Zentrallblat für Geologische und Paläontologische. Part 1, 9/10, 1213-1235.
  • 39. Grocholski, A. and Augustyniak, K. 1971. Geological Atlas of the Lower Silesian Coal Basin. Wydawnictwa Geologiczne. Warszawa. [In Polish with English summary]
  • 40. Guedes, A., Valentim, B., Prieto, A.C., Rodrigues, S. and Noronha, F. 2010. Micro-Raman spectroscopy of collotelinite, fusinite and macrinite. International Journal of Coal Geology, 83, 415-422.
  • 41. Hackley, P.C., Araujo, C.V., Borrego, A.G., Bouzinos, A., Cardott, B.J., Cook, A.C., Eble, C., Flores, D., Gentzis, T., Gonçalves, P.A., Mendonça Filho, J.G., Hámor-Vidó, M., Jelonek, I., Kommeren, K., Knowles, W., Kus, J., Mastalerz, M., Menezes T.R., Newman, J., Oikonomopoulos, J.K., Pawlewicz, M., Pickel, W., Potter, J., Ranasinghe, P., Read, H., Reyes, J., De La Rosa Rodriguez, G., de Souza, I.V.A.F., Suárez-Ruiz, I., Sýkorová I. and Valentine, B.J. 2015. Standardization of reflectance measurements in dispersed organic matter: Results of an exercise to improve interlaboratory agreement. Marine and Petroleum Geology, 59, 22-34.
  • 42. Hartkopf-Fröder, C., Königshof, P., Littke, R. and Schwarzbauer, J. 2015. Optical thermal maturity parameters and organic geochemical alteration at low-grade diagenesis to anchimetamorphism: A review. International Journal of Coal Geology, 150-151, 74-119.
  • 43. Henry, D.G., Jarvis, I., Gillmore, G., Stephenson, M., Emmings, J. 2018. Assessing low maturity organic matter in shales using Raman spectroscopy: Effects of sample preparation and operating procedure. International Journal of Coal Geology, 191, 135-151.
  • 44. Henry, D.G., Jarvis, I., Gillmore, G. and Stephenson, M. 2019. A rapid method for determining organic matter maturity using Raman spectroscopy: Application to Carboniferous organic rich mudstones and Coals. International Journal of Coal Geology, 203, 87-98.
  • 45. Hevia, V. and Virgos, J.M. 1977. The rank and anisotropy of an-thracites: the indicating surface of reflectivity in uniaxial and biaxial substances. Journal of Microscroscopy, 109, 23-28.
  • 46. Hinrichs, R., Brown, M.T., Vasconcellos, M.A.Z., Abrashev, M.V. and Kalkreuth, W. 2014. Simple procedure for an estimation of the coal rank using micro-Raman spectroscopy. International Journal of Coal Geology, 136, 52-58.
  • 47. Houseknecht, D.W., Bensley, D.F., Hathon, L.A. and Kastens, P.H. 1993. Rotational reflectance properties of Arkoma Basin dispersed vitrinite: insights for understanding reflectance populations in high thermal maturity regions. Organic Geochemistry, 20, 187-196.
  • 48. Hoover, D.S. and Davis, A. 1980. The development and evaluation of an automated reflectance microscope system for the petrographic characterization of bituminous coals. Penn State University and U.S. Department of Energy Technical Report, FE-20-30-TR23, 261.
  • 49. Hower, J.C. and Davis, A. 1981. Application of vitrinite reflectance anisotropy in the evaluation of coal metamorphism. Bulletin of Geological Society of America,92, 350-366.
  • 50. International Committee For Coal And Organic Petrology (ICCP). 1998. The new vitrinite classification (ICCP System 1994). Fuel, 77, 349-358.
  • 51. International Committee for Coal and Organic Petrology (ICCP). 2001. The new inertinite classification (ICCP System 1994). Fuel, 80, 459-471.
  • 52. Jarmołowicz-Szulc, K, Hałas, S. and Wojtowicz, A. 2009. Radiometric age analyses of rocks from the northern envelope of the Karkonosze Massif, the Sudetes, Poland: a comparative geochronological study. Geochronometria, 34, 33-39.
  • 53. Jarmołowicz-Szulc, K. 1984. Geochronological study of the northern cover of the Karkonosze granite by fission track method. Archiwum Mineralogiczne, 39, 139-183.
  • 54. Jehlička, J., Urban, O. and Pokorný, J. 2003. Raman spectroscopy of carbon and solid bitumens in sedimentary and metamorphic rocks. Spectrochimica Acta Part A, 59, 2341-2352.
  • 55. Jubb, A.M., Botterell, P.J., Birdwell, J.E., Burruss, R.C., Hackley, P.C., Valentine, B.J., Hatcherian, J.J. and Wilson S.A. 2018. High microscale variability in Raman thermal maturity estimates from shale organic matter. International Journal of Coal Geology, 199, 1-9.
  • 56. Katagiri, G., Ishida, H. and Ishitani A. 1988. Raman spectra of graphite edge planes. Carbon, 26, 565-71.
  • 57. Kley, J. and Voigt T. 2008. Late Cretaceous intraplate thrusting in central Europe: effect of Africa-Iberia-Europe convergence, not Alpine collision. Geology, 36, 839-842.
  • 58. Koch, J. and Günther, M. 1995. Relationship between random and maximum vitrinite reflectance. Fuel, 74, 1687-1691.
  • 59. Komorek, J. and Pozzi, M. 1996. Optical anisotropy of coal from the Jastrzębie Fold (Upper Silesian Coal Basin). Geological Quarterly, 40, 393-406.
  • 60. Komorek, J. and Morga, R. 2002. Relationship between the maximum and the random reflectance of vitrinite for coal from the Upper Silesian Coal Basin (Poland). Fuel, 81, 969-971.
  • 61. Komorek, J. and Morga, R. 2007. Evolution of optical properties of vitrinite, sporinite and semifusinite in response to heating under inert conditions. International Journal of Coal Geology, 71, 389-404.
  • 62. Kouketsu, Y., Mizukami, T., Mori, H., Endo, S., Aoya, M., Hara, H., Nakamura, D. and Wallis, S. 2014. A new approach to develop the Raman carbonaceous material geothermometer for low-grade metamorphism using peak width. Island Arc, 23, 33-50.
  • 63. Kułakowski, T. 1979. Geological environments of coalification of the Žacléř Beds in the Lower Silesian Coal Basin. Geologia Sudetica, 14, 103-139. [In Polish with English summary]
  • 64. Kwiecińska, B. 1967. Coked coals from the Wałbrzych Basin. Prace Mineralogiczne, 9, 1-81. [In Polish with English summary]
  • 65. Kwiecińska, B. Hamburg, G. and Vleeskens, J.M. 1992. Formation temperatures of natural coke in the Lower Silesian Coal Basin, Poland: Evidence from pyrite and clays by SEM-EDX. International Journal of Coal Geology, 21, 217-235.
  • 66. Kwiecińska, B. and Nowak, G. 1997. Highly metamorphosed coals from the Lower Silesian Coal Basin (SW Poland). Prace Państwowego Instytutu Geologicznego, 157, 247-255.
  • 67. Lahfid, A., Beyssac, O., Deville, E., Negro, F., Chopin, C. and Goffé, B. 2010. Evolution of the Raman spectrum of carbonaceous material in low-grade metasediments of the Glarus Alps (Switzerland). Terra Nova, 22, 354-360.
  • 68. Littke, R., Urai, J.L., Uffmann, A.K. and Risvanis, F. 2012. Reflectance of dispersed vitrinite in Palaeozoic rocks with and without cleavage: Implications for burial and thermal history modelling in the Devonian of Rursee area, northern Rhenish Massif, Germany. International Journal of Coal Geology, 89, 41-50.
  • 69. Lorenz, S. and Mroczkowski, J. 1978. The sedimentation and petrography of Zechstein and lowermost Triassic deposits in the vicinity of Kochanów (Intra-Sudetic Trough). Geologia Sudetica, 13, 23-39.
  • 70. Lünsdorf, N.K. and Lünsdorf, J.O. 2016. Evaluating Raman spectra of carbonaceous matter by automated, iterative curve-fitting. International Journal of Coal Geology, 160-161, 51-62.
  • 71. Lünsdorf, N.K. 2016. Raman spectroscopy of dispersed vitrin-ite - Methodical aspects and correlation with reflectance. International Journal of Coal Geology, 153, 75-86.
  • 72. Lünsdorf, N. K., Dunkl, I., Schmidt, B. C., Rantitsch, G. and von Eynatten, H., 2014. Towards a higher comparability of geothermometric data obtained by Raman spectroscopy of carbonaceous material. Part I: evaluation of biasing factors. Geostandards and Geoanalitycal Research, 38, 73-94.
  • 73. Lupoi, J.S., Fritz, L.P., Parris, T.M., Hackley, P.C., Solotky, L., Eble, C.F. and Schlaegle, S. 2017. Assessment of thermal maturity trends in Devonian-Mississippian source rocks using Raman spectroscopy: limitations of peak-fitting method. Frontiers in Energy Research, 5, 1-24.
  • 74. Malkovský, M. 1987. The Mesozoic and Tertiary basins of the Bohemian Massif and their evolution. Tectonophysics, 137, 31-42.
  • 75. Maluski, H., Rajlich, P. and Souček, J. 1995. Pre-Variscan, Variscan and early Alpine thermo-tectonic history of the north-eastern Bohemian massif: an Ar/Ar study. Geologische Rundschau, 84, 345-358.
  • 76. Mastalerz, M. and Jones, J.M. 1988. Coal rank variation in the Intra-Sudetic Basin, SW Poland. International Journal of Coal Geology, 10, 79-97.
  • 77. Mastalerz, M. and Smyth, M. 1988. Petrography and depositional conditions of the 64/65 coal seam in the Intra-Sudetic Basin, SW Poland. International Journal of Coal Geology, 10, 309-336.
  • 78. Mastalerz, M. and Wilks, K.R. 1992. Coal seams of the Wałbrzych Formation, Intra-sudetic Basin, Poland: inferences on changing depositional environment. International Journal of Coal Geology, 20, 243-261.
  • 79. Mastalerz, K. and Mastalerz, M. 2000. Volcanic and post-volcanic hydrothermal activity in the Intra-Sudetic basin, SW Poland: implications for mineralization. In: Glikson, M.V. and Mastalerz, M. (eds.), Organic Matter and Mineralisation, 185-202, Kluwer Press; Brussels.
  • 80. Matthews, M.J., Pimenta, M.A., Dresselhaus, G., Dresselhaus, M.S. and Endo, M. 1999. Origin of dispersive effects of the Raman D band in carbon materials. Physical Review B, 59, 6585-6588.
  • 81. Mazur, S, Aleksandrowski, P., Turniak, K. and Awdankiewicz, M. 2007. Geology, tectonic evolution and Late Palaeozoic magmatism of Sudetes - an overview. In: Kozłowski, A. and Wiszniewska, J. (eds), Granitoids in Poland, 59-87, AM Monography; Warsaw.
  • 82. Mazur, S, Aleksandrowski, P, Kryza, R. and Oberc-Dziedzic, T. 2006. The Variscan Orogen in Poland. Geological Quarterly, 50, 89-118.
  • 83. Migoń, P. and Danišík, M. 2012. Erosional history of the Karkonosze Granite Massif - constraints from adjacent sedimentary basins and thermochronology. Geological Quarterly, 56, 440-454.
  • 84. Migoń, P. and Lidmar-Bergström, K. 2001. Weathering mantles and their significance for geomorphological evolution of central and northern Europe since the Mesozoic. Earth Sciences Reviews, 56, 285-324.
  • 85. Morga, R. 2011. Micro-Raman spectroscopy of carbonized semifusinite and fusinite. International Journal of Coal Geology, 87, 253-267.
  • 86. Morga, R. 2014. Raman microspectroscopy of funginite from the Upper Silesian Coal Basin (Poland). International Journal of Coal Geology, 131, 65-70.
  • 87. Morga, R., Jelonek, I., Kruszewska, K. and Szulik, W. 2015. Relationship between quality of coals, resulting cokes, and micro-Raman spectral characteristics of these cokes. International Journal of Coal Geology, 144, 130-137.
  • 88. Neaval, R. C. Smith, S. Hippo, E. and Miller, R. 1981. Optimum classification of coal. International Conference of Coal Sciences; Dusseldorf.
  • 89. Nemanich, R.J. and Solin, S.A. 1979. First- and second-order Raman scattering from finite-size crystals of graphite. Physical Review B, 20, 392-401.
  • 90. Nowak, G.J. 1993. Lithotype variation and petrography of coal seams from Žacleř Formation (Westphalian) in the Intra-Sudetic Basin, southwestern Poland. Organic Geochemistry 20, 295-313.
  • 91. Nowak, G.J. 1996. Petrological coal seam accumulation model for the Žacleř Formation of the Lower Silesian Coal Basin, southwestern Poland. In: Gayer, R. and Harris, I. (eds), Geological Society, London, Special Publications, 109, 261-286.
  • 92. Nowak, G.J. 1997a. Petrology of Žacleř formation coal seams in the Intra-Sudetic Basin (Lower Silesian Coal Basin). Acta Universitatis Wratislaviensis No 1938. Prace Geologiczno-Mineralogiczne, 57, 99 pp. [In Polish with English summary]
  • 93. Nowak, G.J. 1997b. The variation in coal rank and petrographic composition of coal seams from the eastern part of the Lower Silesian Coal Basin. Biuletyn Państwowego Instytutu Geologicznego, 375, 61-79. [In Polish with English summary]
  • 94. Nowak, G.J. 2000. Thermal maturity of coals from the Lower Silesian Coal Basin on the background of their petrography and genesis. Biuletyn Państwowego Instytutu Geologicznego, 391, 89-146. [In Polish with English summary]
  • 95. Opluštil, S. and Cleal, C.J. 2007. A comparative analysis of some Late Carboniferous basins of Variscan Europe. Geological Magazine, 144, 417-448.
  • 96. Opluštil, S., Schmitz, M., Kachlík, V., and Štamberg, S. 2016. Reassessment of lithostratigraphy, biostratigraphy, and volcanic activity of the Late Paleozoic Intra-Sudetic, Krkonoše-Piedmont and Mnichovo Hradiště basins (Czech Republic) based on new U-Pb CA-ID-TIMS ages. Bulletin of Geosciences, 91, 399-432.
  • 97. Pasteris, J. D. and Wopenka, B. 1991. Raman spectra of graphite as indicates of degree of metamorphism. Canadian Mineralogist, 29, 1-9.
  • 98. Pešek, J. and Sivek, M. 2016. Coal-bearing basins and coal deposits of the Czech Republic. 208 pp. Czech Geological Survey, Prague.
  • 99. Pešek, J. and Sýkorová, I. 2006. A review of the timing of coalification in the light of coal seam erosion, clastic dykes and coal clasts. International Journal of Coal Geology, 66, 13-34.
  • 100. Pickel, W., Kus, J., Flores, D., Kalaitzidis, S., Christanis, K., Cardott, B. J., Misz-Kennan, M., Rodrigues, S., Hentschel, A., Hamor-Vido, M., Crosdale, P. and Wagner, N. 2017. Classification of liptinite - ICCP System 1994. Interna-tional Journal of Coal Geology, 169, 40-61.
  • 101. Pimenta, M. A., Dresselhaus, G., Dresselhaus, M. S., Cancado, L. G., Jorio, A. and Saito, R. 2007. Studying disorder in graphite-based systems by Raman spectroscopy. Physical Chemistry and Chemical Physics, 9, 1276-1291.
  • 102. Pócsik, I., Hundhausen, M., Koos, M. and Ley, L. 1998. Origin of the D peak in the Raman spectrum of microcrystalline graphite. Journal of Non-Crystalline Solids, 227-230, 1083-1086.
  • 103. Potgieter-Vermaak, S., Maledi, N., Wagner, N., Van Heerden, J. H. P., Van Grieken, R. and Potgieter, J.H. 2011. Raman spectroscopy for the analysis of coal: a review. Journal of Raman Spectroscopy, 42, 123-129.
  • 104. Pusz, S., Borrego, A. G., Alvarez, D., Camean, I., du Cann, V., Duber, S., Kalkreuth, W., Komorek, J., Kus, J., Kwiecińska, B. K., Libera, M., Marques, M., Misz-Kennan, M., Morga, R., Rodrigues, S., Smędowski, Ł., Suarez-Ruiz, I. and Strzezik, J. 2014. Application of reflectance parameters in the estimation of the structural order of coals and carbonaceous materials. Precision and bias of measurements derived from the ICCP structural working group. International Journal of Coal Geology, 131, 147-161.
  • 105. Rahl, J. M., Anderson, K. M., Brandon, M. T. and Fassoulas, C. 2005. Raman spectroscopic carbonaceous material thermometry of low-grade metamorphic rocks: Calibration and application to tectonic exhumation in Crete, Greece. Earth and Planetary Science Letters, 240, 339-354.
  • 106. Reich, S. and Thomsen, Ch. 2004. Raman spectroscopy of graphite. Philosophical Transactions of the Royal Society, London, 362, 2271-2288.
  • 107. Robert, P. 1989. The thermal setting of Carboniferous basins in relation to the Variscan orogeny in Central and Western Europe. International Journal of Coal Geology, 13, 171-206.
  • 108. Sadezky, A., Muckenhuber, H., Grothe, H., Niessner, R. and Pöschl, U. 2005. Raman microspectrometry of soot and related carbonaceous materials: spectral analysis and structural information. Carbon,43, 1731-1742.
  • 109. Sawicki, L. 1995. Geological map of Lower Silesia with adjacent Czech and German territories (without Quaternary deposits) 1:100 000. Państwowy Instytut Geologiczny, Warszawa.
  • 110. Scheidt, G. and Littke, R. 1989. Comparative organic petrology of interlayered sandstones, siltstones, mudstones and coals in the Upper Carboniferous Ruhr basin, Northwest Germany, and their thermal history and methane generation. Geologische Rundschau, 78, 375-390.
  • 111. Scheck, M., Bayer, U., Otto, V., Lamarche, J., Banka, D. and Pharaoh, T. 2002. The Elbe Fault System in North Central Europe - a basement controlled zone of crustal weakness. Tectonophysics, 360, 281-299.
  • 112. Skoček, V. and Valečka, J. 1983. Palaeogeography of the Late Cretaceous Quadersandstein of central Europe. Palaeogeography, Palaeoclimatology, Palaeoecology, 44, 71-92.
  • 113. Sobczyk, A., Danišík, M., Aleksandrowski, P. and Anczkiewicz, A. 2015. Post-Variscan cooling history of the central Western Sudetes (NE Bohemian Massif, Poland) constrained by apatite fission-track and zircon (U-Th)/He thermochronology. Tectonophysics, 649, 47-57.
  • 114. Sobczyk, A., Sobel, E.R. and Georgieva, V. 2019. Meso-Cenozoic cooling and exhumation history of the Orlica-Śnieżnik Dome (Sudetes, NE Bohemian Massif, Central Europe): Insights from apatite fission-track thermochronometry. Terra Nova, 2019, 1-12, doi. org/10.1111/ter.12449.
  • 115. Stasiuk, L.D., Burgess, J., Thompson-Rizer, C., Hutton, A. and Cardott, B. 2002. Status report on TSOP-ICCP dispersed organic matter classification working group. The Society for Organic Petrology Newsletter, 19, 1-14.
  • 116. Suchý, V., Frey, M. and Wolf, M. 1997. Vitrinite reflectance and shear-induced graphitization in orogenic belts: A case study from the Kandersteg area, Helvetic Alps, Switzerland. International Journal of Coal Geology, 34, 1-20.
  • 117. Suchý, V., Sýkorová, I., Melka, K., Filip, J. and Machovič, V. 2007. Illite crystallinity, maturation of OM and microstructural development associated with lowest-grade metamorphism of Neoproterozoic sediments in the Teplá-Barrandian unit, Czech Republic. Clay Minerals, 42, 415-438.
  • 118. Suchý, V., Filip, J., Sýkorová, I., Pešek, J. and Kořínková, D. 2019. Palaeo-thermal and coalification history of Permo-Carboniferous sedimentary basins of Central and Western Bohemia, Czech Republic: first insights from apatite fission track analysis and vitrinite reflectance modelling. Bulletin of Geosciences, 94 (2), 201-219.
  • 119. Sweeney, J.J. and Burnham, A.K. 1990. Evaluation of a simple model of vitrinite reflectance based on chemical kinetics. AAPG Bulletin, 74, 1559-1570.
  • 120. Taylor, G.H., Teichmüller, M., Davis, A., Diessel, C.F.K., Littke, R. and Robert, P. 1998. Organic Petrology: A New Handbook Incorporating Some Revised Parts of Stach’s Textbook of Coal Petrology. 704 pp. Gebrüder Borntraeger; Berlin.
  • 121. Teichmüller, M. 1982. Application of coal petrological methods in geology including oil and natural gas prospecting. In: Stach, E., Mackowsky, M.Th., Teichmüller, M., Taylor, G.H., Chandra, D. and Teichmüller, R. (eds), Stach’s textbook of coal petrology, 381-413. Gebruder Borntraeger; Berlin.
  • 122. Teichmüller, R. and Teichmüller, M. 1986. Relations between coalification and paleogeothermics in Variscan and Alpidic foredeeps of Western Europe. In: Buntebarth, G. and Stegena, L. (eds), Paleogeothermics: Lecture notes in Earth Sciences 5, 53-78, Springer-Verlag; New York.
  • 123. Teichmüller, M., 1987. Organic material and very low-grade metamorphism. In: Frey, M. (ed.), Low-temperature metamorphism, 114-161, Chapman and Hall; New York.
  • 124. Teisseyre, A.K. 1968. The Lower Carboniferous of the Intra-Sudetic Basin: Sedimentary petrology and basin analysis. Geologia Sudetica, 4, 221-298.
  • 125. Teisseyre, A.K. 1975. Sedimentology and Paleogeography of the Kulm alluvial fans in the western Intra-Sudetic Basin (Central Sudetes, SW Poland). Geologia Sudetica, 9, 7-135.
  • 126. Ting, F.T.C. 1978. Petrographic techniques in coal analysis. In: Karr, C. (Ed.), Analytical Methods for Coal and Coal Products, 3-26, Academic Press; New York.
  • 127. Toboła, T. 2018. Raman spectroscopy of organic, solid and fluid inclusions in the Oldest Halite of LGOM area (SW Poland). Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 189, 381-392.
  • 128. Todd, J. and Pickel, W. 2011. Comparison of Random and Maximum Reflectance Analysis. Results of Coal and Organic Petrology Services, Internal Report.
  • 129. Tuinstra, F. and Koenig, J.L. 1970. Raman spectrum of graphite. Journal of Chemistry and Physics, 53, 1126-1130.
  • 130. Turnau, E., Żelaźniewicz, A. and Franke, W. 2005. Middle to early late Viséan onset of late orogenic sedimentation in the Intra-Sudetic Basin, West Sudetes: miospore evidence and tectonic implication. Geologia Sudetica, 34, 9-16.
  • 131. Uličný, D., Špičáková, L., Grygar, R., Svobodová, M., Čech, S., Laurin, J. 2009. Palaeodrainage systems at the basal unconformity of the Bohemian Cretaceous Basin: roles of inherited fault systems and basement lithology during the on-set of basin filling. Bulletin of Geosciences, 84, 577-610.
  • 132. Uličný, D. 2001. Depositional systems and sequence stratigraphy of coarse-grained deltas in a shallow-marine, strike-slip setting: the Bohemian Cretaceous Basin, Czech Republic. Sedimentology, 48, 599-628.
  • 133. Ulrych, J., Dostal, J., Adamovič, J., Jelínek, E., Špaček, P., Hegner, E. and Balogh, K. 2011. Recurrent Cenozoic volcanic activity in the Bohemian Massif (Czech Republic). Lithos, 123, 133-144.
  • 134. Ulrych, J., Fediuk, F., Lang, M. and Martinec, P. 2004. Late Paleozoic volcanic rocks of the Intra-Sudetic Basin, Bohemian Massif: petrological and geochemical characteristics. Chemie der Erde - Geochemistry, 64, 127-153.
  • 135. Ulrych, J., Pešek, J., Štěpánková-Svobodova, J., Bosák, P., Lloyd, F.E., von Seckendorff, V., Lang, M. and Novák, J.K. 2006. Permo-Carboniferous volcanism in late Variscan continental basins of the Bohemian Massif (Czech Republic): geochemical characteristic. Chemie der Erde - Geochemistry, 66, 37-56.
  • 136. Ulyanova, E.V., Molchanov, A.N., Prokhorov, I.Y. and Grinyov, V. G. 2014. Fine structure of Raman spectra in coals of different rank. International Journal of Coal Geology, 121, 37-43.
  • 137. Ventura, B., Lisker, F. and Kopp, J. 2009. Thermal and denudation history of the Lusatian Block (NE Bohemian Massif, Germany) as indicated by apatite fission-track data. In: Lisker, F., Ventura, B. and Glasmacher, U.A. (eds.), Thermochronological methods: from Palaeotemperature constraints to landscape evolution models. Geological Society, London, Special Publications, 324, 181-192.
  • 138. Waliczek, M., Machowski, G., Więcław, D., Konon, A., Wandycz, P. 2019. Properties of solid bitumen and other organic matter from Oligocene shales of the Fore-Magura Unit in Polish Outer Carpathians: Microscopic and geochemical approach. International Journal of Coal Geology, 210, No 103206, https://doi.org/10.1016/j.coal.2019.05.013.
  • 139. Wilkins, R.W.T., Boudou, R., Sherwood, N. and Xiao, X. 2014. Thermal maturity evaluation of inertinites by Raman spectroscopy: the RaMM technique. International Journal of Coal Geology, 128-129, 143-152.
  • 140. Wilkins, R.W.T., Wang, M., Gan, H. and Li, Z. 2015. A RaMM study of thermal maturity of dispersed organic matter in marine source rocks. International Journal of Coal Geology, 150-151, 252-264.
  • 141. Wojewoda, J., Rauch, M. and Kowalski, A. 2016. Synsedimentary seismotectonic features in Triassic and Cretaceous sediments of the Intra-Sudetic Basin (U Devìti Krížù locality) - regional implications. Geological Quarterly, 60, 355-364.
  • 142. Wopenka, B. and Pasteris, J.D. 1993. Structural characterization of kerogens to granulite-facies graphite: Applicability of Raman microprobe spectroscopy. American Mineralogist, 78, 533-557.
  • 143. Żakowa, H. 1963. Stratigraphy and facial extents of the Lower Carboniferous in the Sudetes. Kwartalnik Geologiczny, 7, 73-94 [in Polish with English summary].
  • 144. Zhang, Y. and Li, Z. 2019. Raman spectroscopic study of chemical structure and thermal maturity of vitrinite from a suite of Australia coals. Fuel, 241, 188-198.
  • 145. Ziegler, P.A. 1987. Late Cretaceous and Cainozoic intraplate compressional deformations in the Alpine foreland. Tectonophysics, 137, 389-420.
  • 146. Ziegler, P.A., Bertotti, G. and Cloetingh, S.A.P.L. 2002. Dynamic processes controlling foreland development: the role of mechanical (de)coupling of orogenic wedges and forelands. In: Bertotti, G., Schulmann, K. and Cloetingh, S.A.P.L. (Eds), Continental Collision and the tectono-sedimentary evolution of forelands. Stephan Mueller Special Publication Series, 1, 17-56.
  • 147. Ziegler, P.A. and Dèzes, P. 2007. Cenozoic uplift of Variscan Massifs in the Alpine foreland: Timing and controlling mechanisms. Global and Planetary Change, 58, 237-269.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-700dcd7c-9986-489c-873c-685ad721a14a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.