Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
DOI
Warianty tytułu
Konferencja
Federated Conference on Computer Science and Information Systems (17 ; 04-07.09.2022 ; Sofia, Bulgaria)
Języki publikacji
Abstrakty
In this paper we solve a variant of the multi-hop influence maximization problem in social networks by means of a hybrid algorithm that combines a biased random key genetic algorithm with a graph neural network. Hereby, the predictions of the graph neural network are used with the biased random key genetic algorithm for a more accurate translation of individuals into valid solutions to the tackled problem. The obtained results show that the hybrid algorithm is able to outperform both the biased random key genetic algorithm and the graph neural network when used as standalone techniques. In other words, we were able to show that an integration of both techniques leads to a better algorithm.
Słowa kluczowe
Rocznik
Tom
Strony
363--371
Opis fizyczny
Bibliogr. 27 poz.
Twórcy
autor
autor
Bibliografia
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-700d8bc8-98d3-4974-ae0b-475cff7e2ebb