Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
To evaluate the water quality in the Poprad, Kamienica, Dunajec river and the Łubinka stream in the Sącz agglomeration, two series of pilot studies were conducted on raw water samples, with a particular focus on both physical parameters (such as total suspended matter, turbidity, pH, and conductivity) and chemical parameters. The analysis presented increased concentrations of phosphorus, nitrogen, BOD5, COD, chlorides, sulfates, permanganate value, orthophosphates, total suspended matter, specific electrolytic conductivity (PEW), pH levels, and various elements including lithium, magnesium, manganese, potassium, sodium, calcium, and iron. No exceedance of the detection limits for individual pesticides were observed in the waters of the Poprad, Kamienica rivers and the Łubinka stream. Nevertheless, increased concentrations of the insecticide imidacloprid and the fungicide imazalil were detected in the Dunajec river. The primary factors impacting water quality in the Sącz agglomeration are the use of fertilizers, the proximity of wastewater treatment plants, and the presence of landfill sites.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
223--243
Opis fizyczny
Bibliogr. 72 poz., rys., tab.
Twórcy
autor
- Faculty of Engineering Sciences, University of Applied Sciences in Nowy Sącz, ul. Zamenhofa 1A, 33-300 Nowy Sącz, Poland
autor
- Faculty of Engineering Sciences, University of Applied Sciences in Nowy Sącz, ul. Zamenhofa 1A, 33-300 Nowy Sącz, Poland
Bibliografia
- 1. Abugu H.O., Alum O.L., Ekere N.R., Eze I.S., Ucheana I.A., Ezugwu A.L., Ihedioha J.N. 2023. Hydrochemical Assessment of the Rivers Adada and Obinna in Enugu, Nigeria, for Irrigational Application. Journal of Irrigation and Drainage Engineering, 149(5). https://doi.org/10.1061/JIDEDH.IRENG-9899
- 2. Akhtar N., Ishak M.I.S., Bhawani S.A., Umar K. 2021. Various Natural and Anthropogenic Factors Responsible for Water Quality Degradation: A Review. Water, 13, 2660. https://doi.org/10.3390/w13192660
- 3. Aquirre-Martínez G.V., Martín-Díaz M.L. 2020. A multibiomarker approach to assess toxic effects of wastewater treatment plant effluents and activated defence mechanisms in marine (Ruditapes philip pinarum) and fresh water (Corbicula fluminea) bivalve species. Ecotoxicology, 29, 941–958. https://doi.org/10.1007/s10646-020-02216-1
- 4. Ayele H.S., Atlabachew M. 2021. Review of characterization, factors, impacts, and solutions of Lake eutrophication: lesson for lake Tana, Ethiopia. Environ Sci Pollut Res, 28, 14233–14252. https://doi.org/10.1007/s11356-020-12081-4
- 5. Basta E., Szewczyk P. 2024. The Use of Methane from Landfill Gas to Generate Energy and its Management at the Plant as a Way to Reduce Climate Change. Rocznik Ochrona Środowiska, 26, 236–250. DOI10.54740/ros.2024.024
- 6. Chen Y., Guo R., Liao K., Yu W., Wu P., Jin H. 2024. Discovery of novel benzotriazole ultraviolet stabilizers in surface water. Water Research, 257, 121709, https://doi.org/10.1016/j.watres.2024.121709
- 7. Ciuła J. 2021. Modeling the migration of anthropogenic pollution from active municipal landfill in groundwaters. Architecture Civil Engineering Environment, 14, 81–90. https://doi.org/10.21307/ACEE-2021-017
- 8. Ciuła J. 2022. Analysis of the effectiveness wastewater treatment in activated sludge technology with biomass recirculation. Architecture Civil Engineering Environment, 2, 123–134. https://doi.org/10.2478/ACEE-2022-0020
- 9. Ciuła J., Wiewiórska I., Banaś M., Pająk T., Szewczyk P. 2023. Balance and Energy Use of Biogas in Poland: Prospects and Directions of Development for the Circular Economy. Energies, 16, 3910. https://doi.org/10.3390/en16093910
- 10. Cretaux J.F., Calmant S., Papa F., Frappart F., Paris A., Berge-Nguyen M. 2023. Inland Surface Waters Quantity Monitored from Remote Sensing. Surv Geophys, 44, 1519–1552. https://doi.org/10.1007/s10712-023-09803-x
- 11. Cruz-Alcalde A., Sans C., Esplugas S. 2017. Priority pesticides abatement by advanced water technologies: The case of acetamiprid removal by ozonation. Science of The Total Environment, 599–600, 1454-1461. https://doi.org/10.1016/j.scitotenv.2017.05.065
- 12. Czerniawski R., Bilski P. 2019. Functioning and protection of flowing waters. Volumina. (in Polish). Download from: http://drawalifeplus.rdos.szczecin.pl/wp-content/uploads/2019/10/Funkcjonowanie-i-ochronaw%C3%B3d-p%C5%82yn%C4%85cych-2019-monografia.pdf. Acces date: 14.05.2024.
- 13. de Souza R.M., Seibert D., Quesada H.B., Bassetti F. J., Fagundes-Klen M.R., Bergamasco R. 2020. Occurrence, impacts and general aspects of pesticides in surface water: A review. Process Safety and Environmental Protection, 135, 22–37. https://doi.org/10.1016/j.psep.2019.12.035
- 14. Dębska K., Rutkowska B., Szulc W., Gozdowski D. 2021, Changes in Selected Water Quality Parameters in the Utrata River as a Function of Catchment Area Land Use. Water, 13, 2989, https://doi.org/10.3390/w13212989
- 15. Derbalah A., Chidya R., Jadoo, W., Sakugawa H. 2019. Temporal trends in organo phosphorus pesticides use and concentrations in river water in Japan, and risk assessment. Journal of Environmental Sciences, 79, 135–152. https://doi.org/10.1016/j.jes.2018.11.019
- 16. Derylo-Marczewska A., Blachnio M., Marczewski A.W., Seczkowska M., Tarasiuk B. 2019. Phenoxy-acid pesticide adsorption on activated carbon – Equilibrium and kinetics. Chemosphere, 214, 349-360, https://doi.org/10.1016/j.chemosphere.2018.09.088
- 17. Doydora S., Mc Lamore E.S., Peters R., Sozzani R., Van den Broeck L., Duckworth O.W. 2020. Accessing Legacy Phosphorus in Soils. Soil Systems, 4(4), 74. https://doi.org/10.3390/soilsystems4040074
- 18. Dragon K., Górski J., Kruć R., Drożdżyński D., Grischek T. 2018. Removal of natural organic matter and organic micro pollutants during riverbank filtration in Krajkowo, Poland. Water, 10, 1457. https://doi.org/10.3390/w10101457
- 19. Fini M.N., Madsen H.T., Muff J. 2019. The effect of water matrix, feed concentration and recovery on the rejection of pesticides using NF/RO membranes in water treatment. Separation and Purification Technology, 215, 521–527, https://doi.org/10.1016/j.seppur.2019.01.047
- 20. Gebus-Czupyt B., Wach B. 2022. Application of δ18O-PO4 analysis to recognize phosphate pollutions in eutrophic water. Ecohydrology & Hydrobiology, 22, 21–39. https://doi.org/10.1016/j.ecohyd.2021.05.005
- 21. Gronba-Chyła A., Generowicz A., Alwaeli M., Mannheim V., Grąz K., Kwaśnicki P., Kramek A. 2024. Municipal waste utilization as a substitute for natural aggregate in the light of the circular economy. J. Clean. Prod., 440, 140907. https://doi.org/10.1016/j.jclepro.2024.140907
- 22. Gryczko-Gostyńska A., Olędzka D. Regional repor (in Polish). Download from: https://www.pgi.gov.pl/psh/materialy-informacyjne-psh/informatory-psh/wody-podziemne-miast-polski/4165-nowysacz/file.html, access date: 16.05.2024r.
- 23. Hajduga G., Generowicz A., Kryłów M. 2019. Human health risk assessment of heavy metals in road dust collected in Cracow. E3S Web of Conferences 100, 00026. https://doi.org/10.1051/e3sconf /2019
- 24. He X.S., Zhang Y.L., Liu Z.H., Wei D., Liang G., Liu H.T., Xi B.D., Huang Z.B., Ma Y., Xing B.S. 2020. Interaction and coexistence characteristics of dissolved organic matter with toxic metals and pesticides in shallow groundwater. Environmental Pollution, 258, 113736. https://doi.org/10.1016/j.envpol.2019.113736
- 25. Isiuku B.O., Enyoh C.E. 2020. Pollution and health risks assessment of nitrate and phosphate concentrations in water bodies in South Eastern, Nigeria. Environmental Advances, 2, 100018. https://doi.org/10.1016/j.envadv.2020.100018
- 26. Jesuraja K., Selvam S., Murugan R. 2021. GIS-based assessment of groundwater quality index (DWQI and AWQI) in Tiruchendur Coastal City, Southern Tamil Nadu, India. Environmental Earth Sciences, 80, 243. https://doi.org/10.1007/s12665-021-09542-5
- 27. Journal of Laws of 2021, item 1475, Regulation of the Minister of Infrastructure of 25 June 2021 as applied to use in the utility, utility and emergency environment and in the basic version, which is part of the water surface (in Polish). Download from: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20210001475. Access date:14.05.2024.
- 28. Klarich K.L., Pflug N.C., De Wald, E.M., Hladik M.L., Kolpin D.W., Cwiertny D.M., LeFevre G.H. 2017. Occurrence of neonicotinoid insecticides in finished drinking water and fate during drinking water treatment. Environmental Science & Technology Letters, 4(5), 168–173. https://doi.org/10.1021/acs.estlett.7b00081
- 29. Kruć R., Dragon K., Górski J. 2019. Migration of pharmaceuticals from the Warta river to the aquifer at a riverbank filtration site in Krajkowo (Poland). Water, 11, 2238. https://doi.org/10.3390/w11112238
- 30. Kruć-Fijałkowska R., Dragon K., Drożdżyński D., Górski J. 2022. Seasonal variation of pesticides in surface water and drinking water wells in the annual cycle in western Poland, and potential health risk assessment. Scientific Reports, 12, 3317. https://doi.org/10.1038/s41598-022-07385-z
- 31. Kuczyńska A., Jarnuszewski G., Nowakowska M., Wexler S.K., Wiśniowski Z., Burczyk P., Durkowski T., Woźnicka M. 2021, Identifying causes of poor water quality in a Polish agricultural catchment for designing effective and targeted mitigation measures. Science of the Total Environment, 765, 144125. https://doi.org/10.1016/j.scitotenv.2020.144125
- 32. Kumar P., Mehrotra I., Gupta A., Kumar I. S. 2018. Riverbank filtration: A sustainable process to attenuate contaminants during drinking water production. Journal of Sustainable Development of Energy, Water and Environment Systems, 6(1), 150–161. https://doi.org/10.13044/j.sdewes.d5.0176
- 33. Ławniczak A.E., Zbierska J., Nowak B., Achtenberg K., Grześkowiak A., Kanas K. 2016, Impact of agriculture and land use on nitrate contamination in groundwater and running waters in central-west Poland. Environmental Monitoring and Assessment, 188, 172. https://doi.org/10.1007/s10661-016-5167-9
- 34. Li P., Qian H. 2018. Water resources research to support a sustainable China. International Journal of Water Resources Development, 34(3), 327–336. https://doi.org/10.1080/07900627.2018.1452723
- 35. Lobato T.C., Hauser-Davis R.A., Oliveira T.F., Silveira A.M., Silva H.A.N., Tavares M. R.M., Saraiva A.C.F. 2015. Construction of a novel water quality index and quality indicator for reservoir water quality evaluation: A case study in the Amazon region. Journal of Hydrology, 522, 674–683. https://doi.org/10.1016/j.jhydrol.2015.01.021
- 36. Madej P., Grela J. 2021. Problems with the use of habitat methods for the development of a hydrological formula allowing the determination of the environmental flow. Acta Scientiarum Polonorum serie Formatio Circumiectus – Environmental Processes, 20(2), 41–54. DOI: https://doi.org/10.15576/ASP.FC/2021.20.2.41
- 37. Marsela K., Hamdani H., Anna Z., Herawati H. 2021. The Relation of Nitrate and Phosphate to Phytoplankton Abundance in the Upstream Citarum River, West Java, Indonesia. Asian Journal of Fisheries and Aquatic Research, 11(5), 21–31. https://doi.org/10.9734/ajfar/2021/v11i530216
- 38. Masia A., Campo J., Navarro-Ortega A., Barcelo D. Pico Y. 2015. Pesticide monitoring in the basin of Llobregat River (Catalonia, Spain) and comparison with historical data. Science of The Total Environment, 503–504, 58–68. https://doi.org/10.1016/j.scitotenv.2014.06.095
- 39. Mekonnen M.M., Hoekstra A.Y. 2017. Global Anthropogenic Phosphorus Loads to Freshwater and Associated Grey Water Footprints and Water Pollution Levels: A High-Resolution Global Study. Water Resources Resarch, 54(1), 345–358. https://doi.org/10.1002/2017WR020448
- 40. Michel, M. 2020. Neonicotinoids – systemic insecticides in plant protection. Progress in plant protection, 60 (1), 41–48. DOI: 10.14199/ppp-2020-006
- 41. Montuori, P, De Rosa, E., Sarnacchiaro, P., Di Duca, F., Provvisiero, D.P., Nardone, A., Triassi, M. 2014. Spatial distribution and partitioning of polychlorinated biphenyl and organochlorine pesticide in water and sediment from Sarno River and Estuary, Southern Italy. Environmental Sciences Europe, 32(132), 1–22. https://doi.org/10.1186/s12302-020-00408-4
- 42. Nsibande, S.A., Forbes, P.B.C. 2016, Fluorescence detection of pesticides using quantum dot materials – A review, Analytica Chimica Acta, 945, 9–22. https://doi.org/10.1016/j.aca.2016.10.002
- 43. Osowski J., Urbanowicz J. 2023. Dry rot of tubers – agents, symptoms, and control. Progress in plant protection, 63(3), 137–148 (in Polish). DOI:10.14199/ppp-2023-015.
- 44. Pekel J., Cottam A., Gorelick N., Belward A.S. 2016. High-resolution mapping of global surface water and its long-term changes. Nature, 540, 418–422. https://doi.org/10.1038/nature20584
- 45. Policht-Latawiec A., Kanownik W., Wójcik P. 2014. Quality and Sable values of water of flysch stream with low anthropo pressure. PAN, 3, 917–929. DOI: http://dx.medra.org/10.14597/infraeco.2014.3.1.068
- 46. Przydatek G., Basta E. 2020. Systemic Efficiency Assessment of Municipal Solid Waste Management in the Suburban Municipality. E3S Web of Conferences, 154(2), 03001, 1–8. https://doi.org/10.1051/e3sconf/202015403001
- 47. Przydatek G., Generowicz A., Kanownik W. 2024. Evaluation of the Activity of a Municipal Waste Landfill Site in the Operational and Non-Operational Sectors Based on Landfill Gas Productivity. Energies, 17(10), 2421. https://doi.org/10.3390/en17102421
- 48. Puckowski A., Cwięk W., Mioduszewska K., Stepnowski P., Białk-Bielińska A. 2021. Sorption of pharmaceuticals on the surface of microplastics. Chemosphere, 263, 127976. https://doi.org/10.1016/j.chemosphere.2020.127976
- 49. Radecki-Pawlik A., Stypuła K., Radecki-Pawlik B., Brzęk M.,N Plesińsk, K. 2019. Filtration bed and stone riprap securing the banks of mountain streams. Ekologia a Budownictwo, https://bibliotekanauki.pl/articles/161770.pdf. (in Polish).
- 50. Riedo J., Herzog C., Fenner K., Walder F., van der Heijden M.G.A., Bucheli T.D. (2020), Concerted Evaluation of Pesticides in Soils of Extensive Grassland Sites and Organic and Conventional Vegetable Fields Facilitates the Identification of Major Input Processes. Environmental Science & Technology, 56(19), 13686–13695. https://doi.org/10.1021/acs.est.2c02413
- 51. Sadowski A., Baer-Nawrocka A. 2018. Food and environmental function in world agriculture -Interdependence or competition?. Land Use Policy, 71, 578–583. https://doi.org/10.1016/j.landusepol.2017.11.005
- 52. Sallwey A., Jurado A., Barquero F., Fahl J. 2020. Enhanced Removal of Contaminants of Emerging Concern through Hydraulic Adjustments in Soil Aquifer Treatment. Water, 12(9), 2627. https://doi.org/10.3390/w12092627
- 53. Shi P., Zhang Y., Song J., Li P., Wang Y., Zhang X., Li Z., Bi Z., Zhang X., Qin Z., Zhu T. 2019, Response of nitrogen pollution in surface water to land use and social-economic factors in the Weihe River watershed, northwest China. Sustainable Cities and Society, 50, 101658. https://doi.org/10.1016/j.scs.2019.101658
- 54. Solanki M.K., Soni S.K. 2022. Comparative Analysis of River, Underground and Pond Water during March 2022 in Rewa, (M.P.) India. International Journal of Scientific Research in Science and Technology, 9(2), 2395–6011. https://doi.org/10.32628/IJSRST229215
- 55. Srivastava A., Jangid N. K., Srivastava M. Rawat, V. 2020. Pesticides as Water Pollutionts, Adverse Effect of Pesticide Pollution in Aquatic Eco system. Adverse Effect of Pesticide Pollution in Aquatic Eco system, IG Global. Download from: https://www.researchgate.net/publication/339447826_Pesticides_as_Water_Pollutants, Acces date: 15.05.2024.
- 56. Stephens G.L., Slingo J.M., Rignot E., Reager J.T., Hakuba M.Z., Durack P.J., Worden J., Rocca R. 2020. Earth’s water reservoirs in a changing climate. Royal Society, 476, 2236. https://doi.org/10.1098/rspa.2019.0458
- 57. Summerton L., Greener M., Patterson D., Brown C.D. 2022. Effects of soil redistribution by tillage on subsequent transport of pesticide to subsurface drains. Pest Management Science, 79(2), 616–626. https://doi.org/10.1002/ps.7229
- 58. Szklarek S., Górecka A., Salabert B., Wojtal-Frankiewicz A. 2022b. Acute toxicity of seven de-icing salts on four zooplankton species–is there an “eco-friendly” alternative?. Ecohydrology & Hydrobiology, 22(4), 589–597. https://doi.org/10.1016/j.ecohyd.2022.08.005
- 59. Szklarek S., Górecka A., Wojtal-Frankiewicz A. 2022a. The effects of road salt on freshwater ecosystems and solutions for mitigating chloride pollution – A review. Science of The Total Environment, 805, 150289. https://doi.org/10.1016/j.scitotenv.2021.150289
- 60. Tan H., Zhang H., Wu Ch., Wang Ch., Li Q. 2021. Pesticides in surface waters of tropical river basins draining areas with rice–vegetable rotations in Hainan, China: Occurrence, relation to environmental factors, and risk assessmen. Environmental Pollution, 283, 117100. https://doi.org/10.1016/j.envpol.2021.117100
- 61. Titov I., Semerád J., Boháčková J., Beneš H., Cajthaml T. 2024. Microplastics meet micropollutants in a Central European river stream: adsorption of pollutants to microplastics under environmentally relevant conditions, Environmental Pollution, https://doi.org/10.1016/j.envpol.2024.124616
- 62. Uddin M.G., Moniruzzaman M., Quader M.A., Hasan M.A. 2018. Spatial variability in the distribution of trace metals in groundwater around the Rooppur nuclear power plant in Ishwardi, Bangladesh. Groundwater for Sustainable Development, 7, 220–231. https://doi.org/10.1016/j.gsd.2018.06.002.
- 63. Wałęga A., Górka A., Cupak A., Michalec B. 2016. Analysis of hydrological regime of the mountains catchment in multi-year 1985-2012 for example of the Kamienica river. Acta Scientiarum Polonorum Formatio Circumiectus, 15 (3), 177–186, DOI:http://dx.doi.org/10.15576/ASP.FC/2016.15.3.177
- 64. Wiewiórska I., Rybicki S. M. 2022, Analysis of a coagulation sludge contamination with metals using X-ray crystallography. Desalination and Water Treatment, 254, 151–159. https://doi.org/10.5004/dwt.2022.28372
- 65. Wiewiórska I., Labour M., Vovk M., Makara A., Kowalski Z. 2023. Analysis of the impact of changes in surface water quality on the dynamics of treatment processes in drinking water treatment technological systems. Desalination and Water Treatment, 315, 1–12. https://doi.org/10.5004/dwt.2023.30053
- 66. Wiśniowska-Węglarz R. The hydrological network of the Muszyna region from the Sądeczyzna river cycle (in Polish). Download from: https://www.almanachmuszyny.pl/spisy/2008/ SIEC%20HYDROGRAFIC ZNA.pdf. Acces date: 15.05.2024.
- 67. Withers P.J.A., Neal C., Jarvie H.P., Doody D.G. 2014. Agriculture and Eutrophication: Where DoWe Go from Here?. Sustainability, 6(9), 5853–5875. https://doi.org/10.3390/su6095853
- 68. Wojtkowska M., Bojanowski D. 2018. Influence of catchment use on the degree of river water pollution by forms of phosphorus. Rocznik Ochrona Środowiska, 20, 887–904. https://repo.pw.edu.pl/info/article/WU-T15934936a18b4f77adf688ed451 ad8ba/
- 69. Wysocka-Czubaszek A., Wojno W. 2014. Seasonal changes of water chemistry in a small River in an urban catchment. Przegląd Naukowy – Inżynieria i Kształtowanie Środowiska, 63, 64–76 (in Polish).Download from: http://iks.pn.sggw.pl/PN63/A6/art6.pdf. Access date: 15.05.2024.
- 70. Wysowska E., Wiewiórska I., Kicińska A. 2024. The Problem of Health Risk Resulting from the Presence of Pharmaceuticals in Water Used for Drinking Purposes: A Review. J. Ecol. Eng., 25(5), 244-256. DOI: https://doi.org/10.12911/22998993/186371
- 71. Zhao G., Li Y., Zhou L., Gao H. 2022. Evaporative water loss of 142 million global lakes. Nature Communications, 13, 3686. https://doi.org/10.1038/s41467-022-31125-6
- 72. Zwolińska N., Basta E. 2024. Emissions of Gases and Dust into the Air as a Result of the Conversion of Landfill Gas into Electricity and Heat in a Cogeneration Plant. Rocznik Ochrona Środowiska 26, 94–105. https://doi.org/10.54740/ros.2024.010
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-700b0757-4e44-4818-a120-ada96c2a276c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.