PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A comprehensive review on energy and exergy analysis of solar air heaters

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
For economic growth of nation, the energy plays an important role. The excessive use of fossil fuels results the increase in global warming and depleting the resources. Due to this reason, the renewable energy sources are creating more attraction for researchers. In renewable energy sector, solar energy is the most abundant and clean source of energy. In solar thermal systems, solar air heater (SAH) is the main system which is used for heating of air. As it is simple in construction and cheaper in cost, it is of main interest for the researchers. The concept of first law and second law of thermodynamics is used for the study of the energy and exergy analysis respectively. The energy analysis is of great importance for the study of process effectiveness while the exergetic analysis is another significant concept to examine the actual behavior of process involving various energy losses and internal irreversibility. For efficient utilization of solar energy, the exergy analysis is very important tool for optimal design of solar air heaters. The aim of the present work is to review the works related to energy and exergy analysis of various types of solar air heaters and to find out the research gap for future work.
Rocznik
Strony
183--222
Opis fizyczny
Bibliogr. 96 poz., rys., tab., wykr., wz.
Twórcy
  • Department of Energy and Environmental Engineering, Chhattisgarh Swami Vivekanand Technical University, Bhilai, Chhattisgarh, 491107, India
  • Department of Energy and Environmental Engineering, Chhattisgarh Swami Vivekanand Technical University, Bhilai, Chhattisgarh, 491107, India
Bibliografia
  • [1] Garg H.P., Prakash J.: Solar Energy Fundamentals and Applications, Tata McGraw Hill publishing Co. Ltd, 2006.
  • [2] Cengel Y.A., Boles M.A.: Thermodynamics: An Engineering Approach. (5th Edn.) McGraw-Hill; New York 2006.
  • [3] Ghritlahre H.K.: Performance evaluation of solar air heating systems using artificial neural network. PhD Thesis, National Institute of Technology, Jamshedpur 2019.
  • [4] Kumar A., Saini R.P., Saini J.S.: A review of thermohydraulic performance of artificially roughened solar air heaters. Renew. Sustain. Energy Rev. 37(2014), 100–122.
  • [5] Behura A.K., Prasad B.N., Prasad L.: Heat transfer, friction factor and thermal performance of three sides artificially roughened solar air heaters. Sol. Energy 130(2016), 46–59.
  • [6] Ghritlahre H.K., Prasad R.K.: Prediction of heat transfer of two different types of roughened solar air heater using Artificial Neural Network technique. Thermal Sci. Eng. Progress 8(2018), 145–153.
  • [7] Kumar V.: Nusselt number and friction factor correlations of three sides concave dimple roughened solar air heater. Renew. Energ. 135(2019), 355–377.
  • [8] Sharma S.P., Saini J.S., Varma H.K.: Thermal performance of packed bed solar air heaters. Sol. Energy 47(1991), 59–67.
  • [9] Varshney L., Saini J.S.: Heat transfer and friction factor correlations for rectangular solar air heater duct packed with wire mesh screen matrices. Sol. Energy 62(1998), 4, 255–262.
  • [10] Ghritlahre H.K., Prasad R.K.: Investigation of thermal performance of unidirectional flow porous bed solar air heater using MLP, GRNN, and RBF models of ANN technique. Thermal Sci. Eng. Progress 6(2018), 226–235.
  • [11] Ghritlahre H.K.: Performance prediction of porous bed solar air heater using MLP and GRNN model- A comparative study. CSVTU Res. J. Eng. Technol. 5(2019), 1, 70–81.
  • [12] Choudhary C., Garg H.P.: Design analysis of corrugated and flat plate solar air heaters. Renew. Energ. 1(1991), 5/6, 595–607.
  • [13] Mohammadi K., Sabzpooshani M.: Comprehensive performanceevaluation and parametric studies of single pass solar air heater with fins and baffles attached over the absorber plate. Energy 57(2013), 1, 741–750.
  • [14] Priyam A., Chand P.: Thermal and thermohydraulic performance of wavy finned absorber solar air heater. Sol. Energy 130(2016), 250–259.
  • [15] Sahu M.K., Sharma M., Matheswaran M.M., Maitra K.: On the Use of Longitudinal Fins to Enhance the Performance in Rectangular Duct of Solar Air Heaters – A Review. J. Sol. Energy Eng. 141(2019), 3. DOI: 10.1115/1.4042827.
  • [16] Saidur R., Masjuki H.H., Jamaluddin M.Y.: An application of energy and exergy analysis in residential sector of Malaysia. Energ. Policy 35(2007), 2, 1050–1063.
  • [17] Masjuki H.H., Kalam M.A., Syazly M., Mahlia T.M.I., Rahman A.H., Redzuan M. et al.: Experimental evaluation of an unmodified diesel engine using biodiesel with fuel additive. In: IFOST 2006: 1st Int. Forum on Strategic Technology, Proc. 2006, 96–99.
  • [18] Mohammadnejad M., Ghazvini M., Javadi F.S., Saidur R.: Estimating the exergy efficiency of engine using nanolubricants. Energy Education Science and Technology A: Energy Science and Research 27(2011), 2, 447–454.
  • [19] Saidur R., Ahamed J.U., Masjuki H.H.: Energy, exergy and economic analysis of industrial boilers. Energ. Policy 38(2010), 5, 2188–2197.
  • [20] Saidur R., Khaliq A.H.A., Masjuki H.H.: Analysis of energy and exergy use for process heating in the industrial sector of Malaysia. Int. J. Exergy 3(2006), 2, 1119–1149.
  • [21] Hacihafizoglu O.: Energy–exergy analysis of gas turbine cycle in a combined cycle power plant. Energy Education Science and Technology – Part A 27(2011), 1, 123– 138.
  • [22] Saidur R., Sattar M.A., Masjuki H.H., Ahmed S., Hashim U.: An estimation of the energy and exergy efficiencies for the energy resources consumption in the transportation sector in Malaysia. Energ. Policy 35(2007), 8, 4018–4026.
  • [23] Ahamed J.U., Saidur R. Masjuki H.H.: A review on exergy analysis of vapor compression refrigeration system. Renew. Sustain. Energy Rev. 15(2011), 3, 1593–1600.
  • [24] Dikmen E., Sencan A., Selbas R.: Energetic and exergetic approach to vapor compression refrigeration cycle with two-stage and intercooler for new refrigerants. Energy Education Science and Technology – Part A 26(2011), 2, 205–219.
  • [25] Sahu M.K., Prasad R.K.: Entropy generation and thermodynamic analysis of solar air heaters with artificial roughness on absorber plate. Arch. Thermodyn. 38(2017), 3, 23–48. DOI: 10.1515/aoter-2017-0014.
  • [26] Sahu M.K., Prasad R.K.: Second law optimization and parametric study of a solar air heater having artificially roughened absorber plate. Arch. Thermodyn. 40(2019), 2, 107–135. DOI: 10.24425/ather.2019.129544.
  • [27] Fiuk J.J., Dutkowski K.: Experimental investigations on thermal efficiency of a prototype passive solar air collector with wavelike baffles. Sol. Energy 188(2019), 495–506.
  • [28] Wajs J., Golabek A., Bochniak R.: Photovoltaic Roof Tiles: The Influence of Heat Recovery on Overall Performance. Energies 12(2019), 4097. DOI:10.3390/en12214097.
  • [29] Dincer I., Congel Y.A.: Energy, entropy and exergy concepts and their roles in thermal engineering. Entropy 3(2001), 3, 116–149.
  • [30] Ozgener O., Hepbasli A.: A review on the energy and exergy analysis of solar assisted heat pump systems. Renew. Sustain. Energy Rev. 11(2007), 3, 482–496.
  • [31] Gomri R.: Energy and exergy analyses of seawater desalination system integrated in a solar heat transformer. Desalination 249(2009), 1, 188–196.
  • [32] Koroneos C., Nanaki E., Xydis G.: Solar air conditioning systems and their applicability – an exergy approach. Resour. Conserv. Recy. 55(2010), 1, 74–82.
  • [33] Joshi A.S., Dincer I., Reddy B.V.: Analysis of energy and exergy efficiencies for hybrid PV/T systems. Int. J. Low Carbon Technol. 6(2011), 1, 64–69.
  • [34] Xu C., Wang Z., Li X., Sun F.: Energy and exergy analysis of solar power plants. Appl. Therm. Eng. 31(2011), 17–18, 3904–3913.
  • [35] Panwar N.L., Kaushik S.C., Kothari S.: A review on energy and exergy analysis of solar dying systems. Renew. Sustain. Energy Rev. 16(2012), 2812–2819.
  • [36] Oztop H.F., Bayrak F., Hepbasli A.: Energetic and exergetic aspects of solar air heating (solar collector) systems. Renew. Sustain. Energy Rev. 21(2013), 59–83.
  • [37] Aman J., Ting D.S-K., Henshaw P.: Residential solar air conditioning: energy and exergy analyses of an ammonia-water absorption cooling system. Appl. Therm. Eng. 62(2014), 2, 424–432.
  • [38] Park S.R, Pandey A.K, Tyagi V.V. Tyagi. S.K.: Energy and exergy analysis of typical renewable energy systems. Renew. Sustain. Energy Rev. 30(2014), 105–123.
  • [39] Sarker M.S.H., Ibrahim M.N., Aziz N.A., Punan M.S.: Energy and exergy analysis of industrial fluidized bed drying of paddy. Energy 84(2015), 131–138.
  • [40] Ezzat M.F., Dincer I.: Energy and exergy analyses of a new geothermal–solar energy based system. Sol. Energy 134(2016), 95–106.
  • [41] Terhan M., Comakli K.: Energy and exergy analyses of natural gas-fired boilers in a district heating system. Appl. Therm. Eng. 121(2017), 380–387.
  • [42] Zisopoulos F.K., Rossier-Miranda F.J., van der Goot A.J., Boom R.M.: The use of exergetic indicators in the food industry – A review. Crit Rev Food Sci Nutr. 57(2017), 1, 197–211.
  • [43] Sharshira S.W., Elsheikhd A.H., Penga G., Yanga N. E-Samadonyf M.O.A., Kabeel A.E.: Thermal performance and exergy analysis of solar stills – A review. Renew. Sustain. Energy Rev. 73(2017), 521–544.
  • [44] Sansaniwal S.K., Sharma V., Mathur J.: Energy and exergy analyses of various typical solar energy applications: A comprehensive review. Renew. Sustain. Energy Rev. 82(2018), 1576–1601.
  • [45] Fudholi A., Musthafa M.F., Abrar Ridwan A., Yendra R., Desvina A.P., Rahmadeni, Suyono T., Sopian K.: Energy and exergy analysis of air based photovoltaic thermal (PVT) collector: a review. IJECE 9(2019), 1, 109–117. DOI:10.11591/ijece.v9i1.pp109-117.
  • [46] Ahmadi M.H., Nazari M.A., Sadeghzadeh M., Pourfayaz F., Ghazvini M., Ming T., Meyer J.P., Sharifpur M.: Thermodynamic and economic analysis of performance evaluation of all the thermal power plants: A review. Energy Science & Engineering, 2019. DOI: 10.1002/ese3.223.
  • [47] Arshad A., Ali H.M., Habib A., Bashir M.A., Jabbal M., Yana Y.: Energy and exergy analysis of fuel cells: A review. Thermal Science and Engineering Progress 9(2019), 308–321. https://doi.org/10.1016/j.tsep.2018.12.008.
  • [48] Rabha D.K., Muthukumar P., Somayaji C.: Energy and exergy analyses of the solar drying processes of ghost chilli pepper and ginger. Renew. Energ. 105(2017), 764–773.
  • [49] Ghritlahre H.K., Prasad R.K.: Exergetic performance prediction of solar air heater using MLP, GRNN and RBF models of Artificial Neural Network technique. J. Environ. Manage. 223(2018), 566–575.
  • [50] Ghritlahre H.K., Prasad R.K.: Exergetic Performance Prediction of a Roughened Solar Air Heater Using Artificial Neural Network. Strojniški vestnik – J. Mech. Eng. 64(2018), 3, 195–206.
  • [51] Ghritlahre H.K., Prasad R.K.: Prediction of exergetic efficiency of artificial arc shape roughened solar air heater using ANN model. Int. J. Heat Technol. 36(2018), 3, 1107–1115.
  • [52] Fudholi A., Sopian K.: A review of solar air flat plate collector for drying application. Renew. Sustain. Energ. Rev. 2019; 102: 333–345.
  • [53] Kurtbas I., Durmus A.: Efficiency and exergy analysis of a new solar air heater. Renew. Energ. 29(2004), 1489–1501.
  • [54] Ozturk H.H., Demirel Y.: Exergy-based performance analysis of packed-bed solar air heaters. Int. J. Energy Res. 28(2004), 423–432. DOI: 10.1002/er.974.
  • [55] Ozturk H.H.: Experimental evaluation of energy and exergy efficiency of a seasonal latent heat storage system for greenhouse heating. Energ. Convers. Manage. 46(2005), 1523–1542.
  • [56] Ajam H., Farahat S., Sarhaddi F.: Exergetic optimization of solar air heaters and comparison with energy analysis. Int. J. Therm. 8(2005), 4, 183–190.
  • [57] Kurtbase I., Turgut E.: Experimental investigation of solar air heater with free and fixed fins: efficiency and exergy loss. IJSR 1(2006), 1, 75–82.
  • [58] Ucar A., Inallı M.: Thermal and exergy analysis of solar air collectors with passive augmentation techniques. Int. Commun. Heat Mass 33(2006), 1281–1290.
  • [59] Karsli S.: Performance analysis of new-design solar air collectors for drying applications. Renew. Energ. 32(2007), 1645–1660.
  • [60] Esen H.: Experimental energy and exergy analysis of a double-flow solar air heater having different obstacles on absorber plates. Build. Environ. 43(2008), 1046–1054.
  • [61] Gupta M.K., Kaushik S.C.: Exergetic performance evaluation and parametric studies of solar air heater. Energy 33(2008), 11, 1691–1702.
  • [62] Gupta M.K., Kaushik S.C.: Performance evaluation of solar air heater for various artificial roughness geometries based on energy, effective and exergy efficiencies. Renew. Energ. 34(2009), 465–476.
  • [63] Farahat S., Sarhaddi F., Ajam H.: Exergetic optimization of flat plate solar collectors. Renew. Energ. 34(2009), 1169–1174.
  • [64] Akpinar E.K., Koçyiğit F.: Energy and exergy analysis of a new flat-plate solar air heater having different obstacles on absorber plates. Appl. Energ. 87(2010), 3438–3450.
  • [65] Alta D., Bilgili E., Ertekin C., Yaldiz O.: Experimental investigation of three different solar air heaters: energy and exergy analyses. Appl. Energ. 87(2010), 2953–2973.
  • [66] Tyagi V.V., Pandey A.K., Giridhar G., Bandhopdhayay B., Park S.R., Tyagi S.K.: Comparative study based on exergy analysis of solar air dryer using temporary thermal energy storage. IJSR 36(2012), 724–736.
  • [67] Bouadila S., Kooli S., Lazaar M., Skouri S., Farhat A.: Performance of a new solar air heater with packed-bed latent storage energy for nocturnal use. Appl. Energ. 110(2013), 267–275.
  • [68] Benli H.: Experimentally derived efficiency and exergy analysis of a new solar air heater having different surface shapes. Renew. Energ. 50(2013), 58–67.
  • [69] Bayrak F., Oztop H.F., Hepbasli A.: Energy and exergy analyses of porous baffles inserted solar air heaters for building applications. Energy and Buildings 57(2013), 338–345.
  • [70] Bouadila S., Lazaar M., Skouri S., Kooli S., Farhat A.: Energy and exergy analysis of a new solar air heater with latent storage energy. Int. J. Hydrogen Energ. 39(2014), 27, 15266–15274.
  • [71] Velmurugana P., Kalaivanan R.: Energy and Exergy Analysis of Multi-Pass Flat Plate Solar Air Heater—An Analytical Approach. Int. J. Green Energy 12(2015), 810–820.
  • [72] Bahrehmand D., Ameri M., Gholampour M.: Energy and exergy analysis of different solar air collector systems with forced convection. Renew. Energ. 83(2015), 1119–1130.
  • [73] Velmurugana P., Kalaivanan R.: Energy and Exergy Analysis of Solar Air Heaters with Varied Geometries. Arabian Journal for Science and Engineering 40(2015), 4, 1173–1186.
  • [74] Bahrehmand D., Ameri M.: Energy and exergy analysis of different solar air collector systems with natural convection. Renew. Energ. 74(2015), 357–368.
  • [75] Kalaiarasi G., Velraj R., Swami M.V.: Experimental energy and exergy analysis of a flat plate solar air heater with a new design of integrated sensible heat storage. Energy 111(2016), 609–619.
  • [76] Velmurugana P., Kalaivanan R.: Energy and exergy analysis in double-pass solar air heater. Sadhana 41(2016), 3, 369–376.
  • [77] Edalatpour M., Kianifar A., Aryana K., Tiwari G.N.: Energy, exergy, and cost analyses of a double-glazed solar air heater using phase change material. J. Renew. Sustain. Energy Rev. 2016; 8, 015101. DOI: 10.1063/1.4940433.
  • [78] Acır A., Ata I., Şahin I.: Energy and exergy analyses of a new solar air heater with circular-type turbulators having different relief angles. Int. J. Exergy 20(2016), 1, 85–104. DOI: 10.1504/IJEX.2016.076680.
  • [79] Ghiami A, Kianifa A, Aryana K, Edalatpour M.: Energy and Exergy Analysis of a Single-Pass Sequenced Array Baffled Solar Air Heater with Packed Bed Latent Storage Unit for Nocturnal Use. Heat Transfer Asian Research 2016. DOI:10.1002/htj.21230.
  • [80] Acır A., CanlıM.E., Ata I., Çakıroğlu R.: Parametric optimization of energy and exergy analyses of a novel solar air heater with grey relational analysis. Appl. Therm. Eng. 122(2017), 330–338.
  • [81] Ghritlahre H.K., Prasad R.K.: Energetic and exergetic performance prediction of roughened solar air heater using artificial neural network. Ciencia e Tecnica Vitivinicola 32(2017), 11, 2–24.
  • [82] Saha S.N., Sharma S.P.: Energy and exergy analysis of double flow corrugated absorber solar air heaters. Int. Energy Journal 17(2017), 171–184.
  • [83] Ghiami S., Ghiami A.: Comparative study based on energy and exergy analyses of a baffled Solar Air Heater with Latent Storage Collector. Appl. Therm. Eng. 133(2018), 797–808.
  • [84] Abuşka M.: Energy and exergy analysis of solar air heater having new design absorber plate with conical surface. Appl. Therm. Eng. 131(2018), 115–124.
  • [85] Acır A., CanlıM.E, Ata I., Tanürün H.E.: Effect of the circular shaped turbulator having varying hole number of energy and exergy efficiencies of solar air heater. Int. J. Ambient Energy 2018. DOI: 10.1080/01430750.2017.1423385.
  • [86] Debnath S., Das B., Randive P.R.: Experimental energy and exergy analysis of flat plate solar air collector having different spacing and tilt angle. AIP Conf. Proc. 2018; 1998(1): 020014. DOI: 10.1063/1.5049110.
  • [87] Devecioğlu A.G., Oruç V., Tuncer Z.: Energy and exergy analyses of a solar air heater with wire mesh-covered absorber plate. Int. J. Exergy 26(2018), 1/2, 3–20.
  • [88] Ghritlahre H.K.: Development of feed-forward back-propagation neural model to predict the energy and exergy analysis of solar air heater. Trends Renew. Energy 4(2018), 213–235. DOI: 10.17737/tre.2018.4.2.0078.
  • [89] Matheswaran M.M., Arjunan T.V., Somasundaram D.: Analytical investigation of solar air heater with jet impingement using energy and exergy analysis. Sol. Energy 161(2018), 25–37.
  • [90] Matheswaran M.M., Arjunan T.V., Somasundaram D.: Energetic, exergetic and enviro-economic analysis of parallel pass jet plate solar air heater with artificial roughness. J. Therm. Anal. Calorim. 136(2019), 1, 5–19. DOI: 10.1007/ s10973-018-7727-4.
  • [91] Patel S.S., Lanjewar A.: Exergy based analysis of solar air heater duct with Wshaped rib roughness on the absorber plate. Arch. Thermodyn. 40(2019), 4, 21–48, DOI: 10.24425/ather.2019.130006.
  • [92] Aktaş M., Sözen A., Tuncer A.D., Arslan E., Koşan M., Çürük O.: Energyexergy analysis of a novel multi-pass solar air collector with perforated fins. IJRED 8(2019), 1, 47–55.
  • [93] Kumar A., Layek A.: Energetic and exergetic performance evaluation of solar air heater with twisted rib roughness on absorber plate. J. Cleaner Production 2019. DOI: 10.1016/j.jclepro.2019.05.363.
  • [94] Ghritlahre H.K., Prasad R.K.: Development of optimal ANN model to estimate the thermal performance of roughened solar air heater using two different learning algorithms. Annals of Data Science 5(2018), 3, 453–467.
  • [95] Ghritlahre H.K., Prasad R.K.: Modelling of back propagation neural network to predict the thermal performance of porous bed solar air heater. Arch. Thermodyn. 40(2019), 4, 103–128.
  • [96] Ghritlahre H.K., Chandrakar P., Ahmad A.: A Comprehensive review on performance prediction of solar air heaters using artificial neural network. Annals of Data Science 2019, 1–45.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7009ed56-7791-44c5-a90f-f145b9f7186d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.