PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Process Performance of Thermophilic Anaerobic Co-Digestion of Municipal Sewage Sludge and Orange Peel

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the present study, the process performance of anaerobic co-digestion of municipal sewage sludge and orange peel (OP) was evaluated. The experiment was conducted in batch mode under thermophilic conditions (55 °C). It involved adding 1.5 and 3.0 g of OP to reactors R2 and R3, respectively. In R1 (control reactor), the mono-digestion of sewage sludge was conducted. The obtained results indicated that the application of OP led to deterioration of process efficiency. Decreased methane and biogas productions were noticed at both doses of OP. The average values of methane production were 518.9, 416.8 and 458.6 mLCH4·g-1 VS in R1, R2 and R3, respectively. The declining tendency on the biogas and methane rates was also observed. The application of OP resulted in degradation of the stability parameters. The negative effect of OP application was related with the presence of inhibitors such as ammonia nitrogen, volatile fatty acids, limonene and phenol, importantly theirs increased contents were observed in R2 and R3. Moreover, the thermophilic conditions are not recommended for the anaerobic co-digestion of those substrates, because they might accelerate the inhibition phenomenon.
Rocznik
Strony
66--76
Opis fizyczny
Bibliogr. 61 poz., rys., tab.
Twórcy
  • Faculty of Environmental Engineering, Lublin University of Technology, ul. Nadbystrzycka 40B, 20-618 Lublin, Poland
  • Faculty of Environmental Engineering, Lublin University of Technology, ul. Nadbystrzycka 40B, 20-618 Lublin, Poland
  • Faculty of Environmental Engineering, Lublin University of Technology, ul. Nadbystrzycka 40B, 20-618 Lublin, Poland
Bibliografia
  • 1. Akao T., Mizuki E., Saito H., Okumura S. 1992. The methane fermentation of Citrus unshu peel pretreated with fungus enzymes. Bioresource Technol., 41, 35–39.
  • 2. Anjum M., Khalid A., Qadeer S., Miandad R. 2017. Synergistic effect of co-digestion to enhance anaerobic degradation of catering waste and orange peel for biogas production. Waste Management & Research, 35(9), 967–977.
  • 3. APHA A., WEF. 2005. Standard methods for the examination of water and wastewater. In American Public Works Association (21st ed.). APHA-AWWA-WEF.
  • 4. Awasthi M.K, Lukitawesa L., Duan Y., Taherzadeh M.J., Zhang Z. 2022. Bacterial dynamics during the anaerobic digestion of toxic citrus fruit waste and semi-continues volatile fatty acids production in membrane bioreactors. Fuel, 319, 123812.
  • 5. Ayodele O., Adekunle A.E., Alagbe O.A., Anguruwa G.T., Ademola A.A., Odega C.A. Odega, Dornack C. 2022. Application of biomass-derived hydrochar in process stability of anaerobic digestion. Bioresource Technology Reports, 17, 100903.
  • 6. Bakkali F., Averbeck S., Averbeck D., Idaomar M. 2008. Biological effects of essential oils--a review. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association, 46(2), 446–475.
  • 7. Bouaita R., Derbal K., Panico A., Iasimone F., Pontoni L., Fabbricino M., Pirozzi F. 2022. Methane production from anaerobic co-digestion of orange peel waste and organic fraction of municipal solid waste in batch and semi-continuous reactors. Biomass and Bioenergy, 160, 106421.
  • 8. Cai Y., Gallegos D., Zheng Z. 2021. Exploring the combined effect of total ammonia nitrogen, pH and temperature on anaerobic digestion of chicken manure using response surface methodology and two kinetic models. Bioresource Technology, 337, 125328.
  • 9. Calabrò P.S., Fazzino F., Sidari R., Zema D.A. 2020. Optimization of orange peel waste ensiling for sustainable anaerobic digestion. Renewable Energy, 154, 849–862.
  • 10. Carranza-Méndez R.C., Chávez-González M.L., Sepúlveda-Torre L., Aguilar C.N., Govea-Salas M., Ramos-González R. 2022. Production of single cell protein from orange peel residues by Candida utilis. Biocatalysis and Agricultural Biotechnology, 40, 102298.
  • 11. Chen J., Yun S., Shi J., Wang Z., Abbas Y., Wang K., Han F., Jia B., Xu H., Xing T., Li B. 2020. Role of biomass-derived carbon-based composite accelerants in enhanced anaerobic digestion: Focusing on biogas yield, fertilizer utilization, and density functional theory calculations. Bioresource Technology, 307, 123204.
  • 12. Chen Y., Cheng J.J., Creamer K.S. 2008. Inhibition of anaerobic digestion process: a review. Bioresource Technology, 99(10), 4044–4064.
  • 13. Chen Y., Jiang X., Xiao K., Shen N., Zeng R.J., Zhou Y. 2017. Enhanced volatile fatty acids (VFAs) production in a thermophilic fermenter with stepwise pH increase - Investigation on dissolved organic matter transformation and microbial community shift. Water Research, 112, 261–268.
  • 14. Chen Y., Zhang M., Mujumdar A.S., Liu Y. 2022. Combination of epigallocatechin gallate with l-cysteine in inhibiting Maillard browning of concentrated orange juice during storage. LWT.
  • 15. Daiem M.M., Hatata A.Y., Galal O.H., Said N., Ahmed D. 2021. Prediction of biogas production from anaerobic co-digestion of waste activated sludge and wheat straw using two-dimensional mathematical models and an artificial neural network. Renewable Energy, 178, 226–240.
  • 16. El Gheriany I.A., Ahmad El Saqa F., Abd El Razek Amer A., Hussein M. 2020. Oil spill sorption capacity of raw and thermally modified orange peel waste. Alexandria Engineering Journal, 59, 925–932.
  • 17. Fagbohungbe M.O., Herbert B.M., Hurst L., Li H., Usmani S.Q., Semple K.T. 2016. Impact of biochar on the anaerobic digestion of citrus peel waste. Bioresource Technology, 216, 142–149.
  • 18. Forgács G., Pourbafrani M., Niklasson C., Taherzadeh M.J., Hováth I.S. 2012. Methane production from citrus wastes: Process development and cost estimation. Journal of Chemical Technology & Biotechnology, 87, 250–255
  • 19. Han F., Yun S., Zhang C., Xu H., Wang Z. 2019. Steel slag as accelerant in anaerobic digestion for nonhazardous treatment and digestate fertilizer utilization. Bioresource Technology, 282, 331–338.
  • 20. Hao J., Wang, H. 2015. Volatile fatty acids productions by mesophilic and thermophilic sludge fermentation: Biological responses to fermentation temperature. Bioresource Technology, 175, 367–373.
  • 21. Hasan M.B., Al-Tameemi I.M., Abbas M.N. 2021. Orange Peels as a Sustainable Material for Treating Water Polluted with Antimony. Journal of Ecological Engineering, 22(2), 25–35.
  • 22. Isibika A., Vinnerås B., Kibazohi O., Zurbrügg C., Lalander C. 2021. Co-composting of banana peel and orange peel waste with fish waste to improve conversion by black soldier fly (Hermetia illucens (L.), Diptera: Stratiomyidae) larvae. Journal of Cleaner Production, 318, 128570.
  • 23. Jiang X., Xie Y., Liu M., Bin S., Bin, Liu Y., Huan C., Ji G., Wang X., Yan Z., Lyu Q. 2022. Study on anaerobic co-digestion of municipal sewage sludge and fruit and vegetable wastes: Methane production, microbial community and three-dimension fluorescence excitation-emission matrix analysis. Bioresource Technology, 347, 126748.
  • 24. Karatzas A.K., Bennik M.H., Smid E.J., Kets E.P. 2000. Combined action of S-carvone and mild heat treatment on Listeria monocytogenes Scott A. Journal of Applied Microbiology, 89(2), 296–301.
  • 25. Kunatsa T., Xia X. 2022. A review on anaerobic digestion with focus on the role of biomass co-digestion, modelling and optimisation on biogas production and enhancement. Bioresource Technology, 344, 126311.
  • 26. Lane A.G. 1983. Removal of peel oil from citrus peel press liquors before anaerobic digestion. Environmental Science & Technology Letters, 4, 65–72.
  • 27. Lebiocka M., Montusiewicz A., Szaja A., Rembisz S., Nowakowska E. 2019. Thermophilic Co-Digestion of Sewage Sludge and Brewery Spent Grain. Journal of Ecological Engineering, 20(10), 118–124.
  • 28. Levén L., Nyberg K., Schnürer A. 2012. Conversion of phenols during anaerobic digestion of organic solid waste - a review of important microorganisms and impact of temperature. Journal of Environmental Management, 95, 99–103.
  • 29. Li W., Guo J., Cheng H., Wang W., Dong R., 2017. Two-phase anaerobic digestion of municipal solid wastes enhanced by hydrothermal pretreatment: viability, performance and microbial community evaluation. Applied Energy, 189, 613–622.
  • 30. Liu Y., Xiao Q., Jia Z., Wang C., Ye X., Du J., Kong X., Xi Y. 2021. Relieving ammonia nitrogen inhibition in high concentration anaerobic digestion of rural organic household waste by Prussian blue analogue nanoparticles addition. Bioresource Technology, 330, 124979.
  • 31. Lukitawesa, Wikandari R., Millati R., Taherzadeh M.J., Niklasson, C. 2018. Effect of Effluent Recirculation on Biogas Production Using Two-Stage Anaerobic Digestion of Citrus Waste. Molecules, 23, 3380.
  • 32. Lund-Durlacher D., Gössling S. 2020. An analysis of Austria’s food service sector in the context of climate change. Journal of outdoor recreation and tourism, 100342.
  • 33. Mandal T., Mandal N.K. 1997. Comparative study of biogas production from different waste materials. Energy Conversion and Management, 38, 679–683.
  • 34. Martín M.A, Siles J.A., Chica A.F., Martín A. 2010. Biomethanization of orange peel waste, Bioresource Technology, 101, 8993–8999.
  • 35. Martín M.A., Fernández R., Serrano A., Siles J.A. 2013. Semi-continuous anaerobic co-digestion of orange peel waste and residual glycerol derived from biodiesel manufacturing. Waste Management, 33(7), 1633–1639.
  • 36. Martínez E.J., Rosas J.G., Sotres A., Morán A., Cara J., Sánchez M.E., Gómez X. 2018. Codigestion of sludge and citrus peel wastes: Evaluating the effect of biochar addition on microbial communities. Biochemical Engineering Journal, 137, 314–325.
  • 37. Moerland M.J., Castañares Pérez L., Ruiz Velasco Sobrino M.E., Chatzopoulos P., Meulman B., de Wilde V., Zeeman G., Buisman C.J.N., van Eekert, M.H.A. 2021. Thermophilic (55°C) and hyperthermophilic (70°C) anaerobic digestion as novel treatment technologies for concentrated black water. Bioresource Technology, 340, 125705.
  • 38. Negro V., Alvarado-Morales M., Tsapekos P., Fino D., Ruggeri B., Angelidaki, I. 2020. Co-digestion of orange peels and marine seaweed with cattle manure to suppress inhibition from toxicants. Biomass Conversion and Biorefinery, 1–10.
  • 39. Nielfa A., Cano R., Perez A., Fdez-Polanco M. 2015. Co-digestion of municipal sewage sludge and solid waste: modelling of carbohydrate, lipid and protein content influence. Waste Management & Research, 33, 241–249.
  • 40. Ortiz D.L., Batuecas E., Orrego C.E., Rodríguez L.J., Camelin E., Fino D. 2020. Sustainable management of peel waste in the small-scale orange juice industries: A Colombian case study. Journal of Cleaner Production, 121587.
  • 41. Rajagopal R., Massé D.I., Singh G. 2013. A critical review on inhibition of anaerobic digestion process by excess ammonia. Bioresource Technology, 143, 632–641.
  • 42. Ren S., Usman M., Tsang D., O-Thong S., Angelidaki I., Zhu X., Zhang S., Luo, G. 2020. Hydrochar-Facilitated Anaerobic Digestion: Evidence for Direct Interspecies Electron Transfer Mediated through Surface Oxygen-Containing Functional Groups. Environmental Science & Technology, 54(9), 5755–5766.
  • 43. Romano R.T., Zhang R. 2008. Co-digestion of onion juice and wastewater sludge using an anaerobic mixed biofilm reactor. Bioresource Technology, 99(3), 631–637.
  • 44. Ruiz B., Flotats X. 2014. Citrus essential oils and their influence on the anaerobic digestion process: an overview. Waste Management, 34(11), 2063–2079.
  • 45. Ruiz B., de Benito A., Rivera J.D., Flotats X. 2016. Assessment of different pre-treatment methods for the removal of limonene in citrus waste and their effect on methane potential and methane production rate. Waste management & research: the journal of the International Solid Wastes and Public Cleansing Association, ISWA, 34(12), 1249–1257.
  • 46. Serrano A., Siles López J.A., Chica A.F., Martin M., Karouach F., Mesfioui A., El Bari H. 2014. Mesophilic anaerobic co-digestion of sewage sludge and orange peel waste. Environmental Technology, 35(5–8), 898–906.
  • 47. Shan Y. 2016. Functional components of citrus peel. In: Comprehensive Utilization of Citrus By-Products, 1–13.
  • 48. Shi X., Zuo J., Li B., Yu H. 2020. Two-stage anaerobic digestion of food waste coupled with in situ ammonia recovery using gas membrane absorption: Performance and microbial community. Bioresourse Technology, 297, 122458.
  • 49. Siegert I., Banks C. 2005. The effect of volatile fatty acid additions on the anaerobic digestion of cellulose and glucose in batch reactors. Process Biochemistry, 40(11), 3412–3418.
  • 50. Srilatha H.R., Nand K.C., Babu K.S., Madhukara K. 1995. Fungal pretreatment of Orange Processing Waste by solid-state fermentation for improved production of methane. Process Biochemistry, 30, 327–331.
  • 51. Suarez E., Tobajas M., Mohedano A.F., de la Rubia A.M. 2022. Energy recovery from food waste and garden and park waste: Anaerobic co-digestion versus hydrothermal treatment and anaerobic co-digestion. Chemosphere, 297, 134223.
  • 52. Tayibi S., Monlau F., Bargaz A., Jimenez R., Barakat A. 2021. Synergy of anaerobic digestion and pyrolysis processes for sustainable waste management: A critical review and future perspectives. Renewable and Sustainable Energy Reviews, 152, 111603.
  • 53. Terzioğlu P., Güney, F., Nur Parın F., Şen I., Tuna S. 2021. Biowaste orange peel incorporated chitosan/polyvinyl alcohol composite films for food packaging applications. Food Packaging and Shelf Life, 30, 100742.
  • 54. Tsouko E., Maina S., Ladakis D. Kookos I.K., Koutinas A., 2020. Integrated biorefinery development for the extraction of value-added components and bacterial cellulose production from orange peel waste streams. Renewable Energy, 160(C), 944–954.
  • 55. Verma R., Singhbabu Y.N., Didwal P.N., Nguyen A.G., Kim J., Park C.J. 2020. Biowaste orange peel-derived mesoporous carbon as a cost-effective anode material with ultra-stable cyclability for potassium-ion batteries. Batterries & Supercaps, 3(10), 1099–1111.
  • 56. Wikandari R., Youngsukkasem S., Millati R., Taherzadeh M.J. 2014. Performance of semi-continuous membrane bioreactor in biogas production from toxic feedstock containing D-Limonene. Bioresource Technology, 170, 350–355.
  • 57. Yan W., Mukherjee M., Zhou Y. 2020. Direct interspecies electron transfer (DIET) can be suppressed under ammonia-stressed condition-Reevaluate the role of conductive materials. Water Research, 183, 116094.
  • 58. Yaradoddi J.S., Banapurmath N.R., Ganachari S.V., Soudagar M.E., Sajjan A.M., Kamat S., Mujtaba M.A., Shettar A.S., Anqi A.E., Safaei M.R., Elfasakhany A., Haque Siddiqui M.I., Ali M.A. 2021. Bio-based material from fruit waste of orange peel for industrial applications. Journal of Materials Research and Technology, 17, 3186–3197
  • 59. Zhang C., Yun S., Li X. 2018. Low-cost composited accelerants for anaerobic digestion of dairy manure: Focusing on methane yield, digestate utilization and energy evaluation. Bioresource Technology, 263, 517–524.
  • 60. Zhang L., Loh K.C., Sarvanantharajah S., Tong Y.W., Wang C., Dai Y. 2019. Mesophilic and thermophilic anaerobic digestion of soybean curd residue for methane production: Characterizing bacterial and methanogen communities and their correlations with organic loading rate and operating temperature. Bioresource Technology, 288, 121597.
  • 61. Zhang M., Wang Y. 2021. Impact of biochar supported nano zero-valent iron on anaerobic co-digestion of sewage sludge and food waste: Methane production, performance stability and microbial community structure. Bioresource Technology, 340, 125715.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-70072f3c-94a4-4610-bcff-68407a8bf2e2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.