PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimization of road transport within the supply network - a case study from Poland

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Optimization in the area of road transport is the subject of numerous scientific publications. Its analysis uses programming languages (including linear) and tools enabling not only a detailed analysis of the examined process but also including data dynamics (demand variability) and the availability of resources (means of transport) diversified in terms of permissible total mass (GVW). Such tools are useful because they support decision-making processes. This paper uses the example of a military supply network to present a multi-criteria methodology enabling minimization of total transport costs, number and type (due to load capacity) of vehicles used, distance traveled, fuel used, and CO2 emissions into the atmosphere. Moreover, additional restrictions on existing transport resources were included, considering the number and type of vehicles available at the base. This is of great importance, especially when there is a need to provide emergency deliveries, for example, in the event of a war threat. The proposed method is universal and was developed using an MS Excel spreadsheet with the Solver add-in.
Czasopismo
Rocznik
Strony
193--206
Opis fizyczny
Bibliogr. 40 poz.
Twórcy
  • Military University of Technology; gen. S. Kaliskiego st. 2, 00-908 Warsaw, Poland
  • niversity of Defence, Kounicova 156/65,662-10 Brno, Czech Republic
  • Military University of Technology; gen. S. Kaliskiego st. 2, 00-908 Warsaw, Poland
  • Military University of Technology; gen. S. Kaliskiego st. 2, 00-908 Warsaw, Poland
Bibliografia
  • 1. Andrzejczak, K. & Selech, J. Quantile analysis of the operating costs of the public transport fleet. Transport Problems. 2017. Vol. 12(3). P. 103-111. DOI: 10.20858/tp.2017.12.3.10.
  • 2. Zieja, M. & Ziółkowski, J. & Oszczypała, M. Comparative Analysis of Available Options for Satisfying Transport Needs Including Costs. 2019. Vol. 2019-October. P. 1433-1438.
  • 3. Sendek-Matysiak, E. & Pyza, D. & Łosiewicz, Z. & Lewicki, W. Total cost of ownership of light commercial electrical vehicles in city logistics. Energies. 2022. Vol. 15(22). No. 8392. DOI: 10.3390/en15228392.
  • 4. Le, T.T. & Sharma, P. & Pham, N.D.K. & Le, D.T.N. & Le, V.V. & Osman, S.M. & Rowinski, L. & Tran, V.D. Development of comprehensive models for precise prognostics of ship fuel consumption. Journal of Marine Engineering and Technology. 2024. Vol. 23(6). P. 451-465. DOI: 10.1080/20464177.2024.2372888.
  • 5. Canal, R. & Riffel, F.K. & Gracioli, G. Machine learning for real-time fuel consumption prediction and driving profile classification based on ECU data. IEEE Access. 2024. Vol. 12. P. 68586-68600. DOI: 10.1109/ACCESS.2024.3400933.
  • 6. Hassane, E. & Ahmed, E.A. Optimization of correspondence times in bus network zones, modeling and resolution by the multi-agent approach. Journal of the Operations Research Society of China. 2020. Vol. 8. P. 415-436. DOI: 10.1007/s40305-020-00307-8.
  • 7. Sun, X. & Chen, Z. & Han, S. & Tian, X. & Zhijia, J. & Cao, Y. & Xue, M. Adaptive real-time ECMS with equivalent factor optimization for plug-in hybrid electric buses. Energy. 2024. Vol. 304. No. 132014. DOI: 10.1016/j.energy.2024.132014.
  • 8. Mazaheri, H. & Goli, S. & Nourollah, A. Path planning in three-dimensional space based on butterfly optimization algorithm. Scientific Reports. 2024. Vol. 14. No. 2332. DOI: 10.1038/s41598-024-52750-9.
  • 9. Chen, H. & Wang, W. & Cheng, L. & Li, P. A Cooperative optimization method for the layout of shared bicycle parking areas and delivery quantity. Scientific Reports. 2024. Vol. 14. No. 4171. DOI: 10.1038/s41598-024-54647-z.
  • 10. Taran, I. & Bikhimova, G. & Danchuk, V. & Toktamyssova, A. & Tursymbekova, Z. & Oliskevych, M. Improving the methodology for optimizing multimodal transportation delivery routes and cyclic schedules in a transnational direction. Transport Problems. 2024. Vol. 19(1). P. 157-170. DOI: 10.20858/tp.2024.19.1.13.
  • 11. Bhuiyan, T.H. & Walker, V. & Roni, M. & Ahmed, I. Aerial drone fleet deployment optimization with endogenous battery replacements for direct delivery of time-sensitive products. Expert Systems with Applications. 2024. Vol. 252. Part B. No. 124172. DOI: 10.1016/j.eswa.2024.124172.
  • 12. Liu, H. & Wang, S. & Yang, T. & Chen, Z. Optimized transportation scheduling for precast concrete components considering heterogeneous vehicle-size matching. Advanced Engineering Informatics. 2024. Vol. 62. Part A. No. 102658. DOI: 10.1016/j.aei.2024.102658.
  • 13. Zhang, X. & Yin, S. & Lu, X. & Liu, Y. & Wang, T. & Zhang, B. & Li, Z. & Wang, W. & Kong, M. & Chen, K. Establish of air pollutants and greenhouse gases emission inventory and co-benefits of their reduction of transportation sector in Central China. Journal of Environmental Sciences (China) 2025. Vol. 150. P. 604-621. DOI: 10.1016/j.jes.2023.12.025.
  • 14. Kirci, P. A Novel model for vehicle routing problem with minimizing CO2 emissions. In: 2019 3rd International Conference on Advanced Information and Communications Technologies (AICT). 2019. P. 241-243. DOI: 10.1109/AIACT.2019.8847900.
  • 15. Egami, R.H.M. Mathematical programming model for cost-optimized and environmentally sustainable supply chain design. AIP Advances. 2024. Vol. 14. No. 025230. DOI: 10.1063/5.0192256.
  • 16. Borucka, A. & Kozłowski, E. Modeling the dynamics of changes in co2 emissions from polish road transport in the context of COVID-19 and decarbonization requirements. Combustion Engines. 2023. Vol. 195. P. 63-70. DOI: 10.19206/CE-169697.
  • 17. Ru, S. Vehicle logistics intermodal route optimization based on tabu search algorithm. Scientific Reports. 2024. Vol. 14. No. 11859. DOI: 10.1038/s41598-024-60361-7.
  • 18. Liu, Z. & Niu, Y. & Guo, C. & Jia, S. A vehicle routing optimization model for community group buying considering carbon emissions and total distribution costs. Energies. 2023. Vol. 16(2). No. 931. DOI: 10.3390/en16020931.
  • 19. Dziubak, T. & Wysocki, T. & Dziubak, S. Selection of vehicles for fleet of transport company on the basis of observation of their operational reliability. Eksploatacja i Niezawodność. 2021. Vol. 23. P. 184-194. DOI: 10.17531/EIN.2021.1.19.
  • 20. Oszczypała, M. & Ziółkowski, J. & Małachowski, J. & Lęgas, A. Nash equilibrium and Stackelberg approach for traffic flow optimization in road transportation networks - a case study of Warsaw. Applied Sciences. 2023. Vol. 13(5). No. 3085. DOI: 10.3390/app13053085.
  • 21. Cui, Z. & Wang, X. & Ci, Y. & Yang, C. & Yao, J. Modeling and analysis of car-following models incorporating multiple lead vehicles and acceleration information in heterogeneous traffic flow. Physica A: Statistical Mechanics and its Applications. 2023. Vol. 630. No. 129259. DOI: 10.1016/j.physa.2023.129259.
  • 22. Ziółkowski, J. & Żurek, J. & Małachowski, J. & Oszczypała, M. & Szkutnik-Rogoż, J. Method for calculating the required number of transport vehicles supplying aviation fuel to aircraft during combat tasks. Sustainability (Switzerland). 2022. Vol. 14(3). No. 1619. DOI: 10.3390/su14031619.
  • 23. Kozłowski, E. & Borucka, A. & Oleszczuk, P. & Jałowiec, T. Evaluation of the maintenance system readiness using the semi-markov model taking into account hidden factors. Eksploatacja i Niezawodność. 2023. Vol. 25(4). No. 172857. DOI: 10.17531/ein/172857.
  • 24. Ziółkowski, J. & Oszczypała, M. & Lęgas, A. & Konwerski, J. & Małachowski, J. A method for calculating the technical readiness of aviation refuelling vehicles. Eksploatacja i Niezawodność. 2024. Vol. 26(3). No. 187888. DOI: 10.17531/ein/187888.
  • 25. Grzelak, M. & Borucka, A. & Świderski, A. Assessment of the influence of selected factors on the punctuality of an urban transport fleet. Transport Problems. 2020. Vol. 15(4). Part 2. P. 311-323. DOI: 10.21307/TP-2020-069.
  • 26. Żurek, J. & Zieja, M. & Ziółkowski, J. Reliability of Supplies in a Manufacturing Enterprise. 2018. CRC Press. P. 3143-3148.
  • 27. Selech, J. & Rogula-Kozłowska, W. & Piątek, P. & Walczak, A. & Pieniak, D. & Bondaronok, P. & Marcinkiewicz, J. Failure and reliability analysis of heavy firefighting and rescue vehicles: a case study. Eksploatacja i Niezawodność. 2024. Vol. 26(1). No. 175505. DOI: 10.17531/ein/175505.
  • 28. Chen, D. & Cheng, S. & Liu, J. & Zhang, J. & You, X. A simulation-based optimization method for truck-prohibit ramp placement along freeways. Mathematical Problems in Engineering. 2023. Vol. 2023. No. 4170669. P. 1-11. DOI: 10.1155/2023/4170669.
  • 29. Ziółkowski, J. & Małachowski, J. & Oszczypała, M. & Szkutnik-Rogoż, J. & Konwerski, J. Simulation model for analysis and evaluation of selected measures of the helicopter’s readiness. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 2022. Vol. 236(13). DOI: 10.1177/09544100211069180.
  • 30. Ulbrich, D. & Selech, J. & Kowalczyk, J. & Jóźwiak, J. & Durczak, K. & Gil, L. & Pieniak, D. & Paczkowska, M. & Przystupa, K. Reliability analysis for unrepairable automotive components. Materials. 2021. Vol. 14(22). No. 7014. DOI: 10.3390/ma14227014.
  • 31. Galiev, I.F. & Sabitov, A.E. & Galiev, I.F. Analysis of the reliability and efficiency of local power supply systems at major international events. In: Proceedings of ICEPP 2021. Lecture Notes in Civil Engineering. 2022. Vol. 190. P. 269-278. DOI: 10.1007/978-3-030-86047-9_28.
  • 32. Mi, J. & Beer, M. & Li, Y.-F. & Broggi, M. & Cheng, Y. Reliability and importance analysis of uncertain system with common cause failures based on survival signature. Reliability Engineering and System Safety. 2020. Vol. 201. No. 106988. DOI: 10.1016/j.ress.2020.106988.
  • 33. Musa, I.M. & Yusuf, I. Reliability analysis of a small solar system for a home. International Journal of Quality and Reliability Management. 2023. Vol. 40. P. 267-279. DOI: 10.1108/IJQRM-10-2020-0336.
  • 34. Cheng, B. & Xie, T. & Wang, L. & Tan, Q. & Cao, X. Deep reinforcement learning driven cost minimization for batch order scheduling in robotic mobile fulfillment systems. Expert Systems with Applications. 2024. Vol. 255. Part C. No. 124589. DOI: 10.1016/j.eswa.2024.124589.
  • 35. Engholm, A. & Allstrom, A. & Akbarian, M. Exploring cost performance tradeoffs and uncertainties for electric- and autonomous electric trucks using computational experiments. European Transport Research Review. 2024. Vol. 16(41). P. 1-15. DOI: 10.1186/s12544-024-00662-0.
  • 36. Klepikov, V. & Klepikova, L. & Hammoudeh, S. Costs relations in the hydrocarbons supply chain project. Energy Reports. 2024. Vol. 12. P. 872-880. DOI: 10.1016/j.egyr.2024.07.009.
  • 37. Pingale, S. & Kaur, A. & Agarwal, R. Collaborative last mile delivery: a two-echelon vehicle routing model with collaboration points. Expert Systems with Applications. 2024. Vol. 252. Part B. No. 124164. DOI: 10.1016/j.eswa.2024.124164.
  • 38. Husemann, M. & Kirste, A. & Stumpf, E. Analysis of cost-efficient urban air mobility systems: optimization of operational and configurational fleet decisions. European Journal of Operational Research. 2024. Vol. 317(3). P. 678-695. DOI: 10.1016/j.ejor.2023.04.040.
  • 39. Grzelak, M. & Owczarek, P. & Stoica, R.-M. & Voicu, D. & Vilau, R. Application of logistic regression to analyze the economic efficiency of vehicle operation in terms of the financial security of enterprises. Logistics. 2024. Vol. 8(2). No. 46. DOI: 10.3390/logistics8020046.
  • 40. The Sustainable Development Goals. Available at: https://www.un.org/sustainabledevelopment/development-agenda/.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-70031f94-4eb6-4158-ab1d-81a6b85c23e9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.