PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical and experimental research on cross wedge rolling hollow shafts with a variable inner diameter

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The precise forming of inner hole has been a major technical difficulty in the cross wedge rolling (CWR) of hollow shaft. This paper proposes a new process to form hollow shafts with variable inner diameters by using the CWR with mandrel control. The forming characteristics and dimension precision of this process are analyzed by combining finite element modelling (FEM) and forming trials. The hole step of hollow shaft with variable inner diameter is formed in a spiral pattern. The helixes result in many micro-steps in hole step when forming the right-angle inner step. The metal flow lines demonstrated that mandrel step hindered the axial metal flow of inner hole and the metals were accumulated in hole step. The rolling load increases in the process of forming hole step. The mandrel is subjected to axial load when hole contacts the mandrel step. The roundness can be improved by reducing the mandrel diameter in knifing position. The axial accuracy of inner diameter can be classed as three parts: hole expansion, stable rolling, hole shrinkage. The compensated mandrel was designed to improve axial precision of inner diameter. The results showed that the inner hole dimension can be effectively controlled.
Rocznik
Strony
1497--1510
Opis fizyczny
Bibliogr. 28 poz., rys., tab., wykr.
Twórcy
autor
  • SchoolofMechanicalEngineering,UniversityofScienceandTechnology,Beijing,China
autor
  • SchoolofMechanicalEngineering,UniversityofScienceandTechnology,Beijing,China
  • BeijingKeyLaboratoryofMetalLightweightFormingandManufacturing,China
autor
  • SchoolofMechanicalEngineering,UniversityofScienceandTechnology,Beijing,China
  • BeijingKeyLaboratoryofMetalLightweightFormingandManufacturing,China
autor
  • SchoolofMechanicalEngineering,UniversityofScienceandTechnology,Beijing,China
Bibliografia
  • [1] F. Schmieder, P. Kettner, Manufacturing of hollowtransmission shafts via bulk-metal forging, J. Mater.Process. Technol. 71 (1) (1997) 113–118.
  • [2] C. Yang, X. Lu, Y. Sun, X. Zhuang, L. Wang, Research status onforming technology for hollow shaft, Forg. Stamp. Tech. 43(01) (2018) 1–8 (In chinese).
  • [3] A. Ghaei, M.R. Movahhedy, A.K. Taheri, Study of the effects ofdie geometry on deformation in the radial forging process, J.Mater. Process. Technol. 170 (1–2) (2005) 156–163.
  • [4] A. Ghaei, M.R. Movahhedy, A. Karimi Taheri, Finite elementmodelling simulation of radial forging of tubes withoutmandrel, Mater. Des. 29 (4) (2008) 867–872.
  • [5] J. Bartnicki, Z. Pater, A. Gontarz, Theoretical analysis ofrolling-extrusion process of axi-symmetrical parts, Arch.Civil Mech. Eng. 8 (2) (2008) 5–11.
  • [6] A. Gontarz, Z. Pater, A. Tofil, Numerical analysis ofunconventional forging process of hollowed shaft from Ti-6Al-4V alloy, J. Shanghai Jiaotong Univ. 16 (2) (2011) 157–161.
  • [7] A. Gontarz, G. Winiarski, Numerical and experimental studyof producing flanges on hollow parts by extrusion with amovable sleeve, Arch. Metal. Mater. 60 (3) (2015) 1917–1922.
  • [8] Z. Pater, A. Gontarz, J. Tomczak, Producing hollow driveshafts by rotary compression, Arch. Civil Mech. Eng. 15 (4)(2015) 917–924.
  • [9] Z. Pater, T. Bulzak, J. Tomczak, Numerical analysis of a skewrolling process for producing a stepped hollow shaft made oftitanium alloy Ti6Al4V, Arch. Metal. Mater. 61 (2) (2016) 677–682.
  • [10] D. Landgrebe, J. Steger, U. BöHmichen, Modified cross-wedgerolling for creating hollow shafts, Procedia Manuf. 21 (2018)53–59.
  • [11] H. Ji, J. Liu, B. Wang, et al., A new method for manufacturinghollow valves via cross wedge rolling and forging: numericalanalysis and experiment validation, J. Mater. Process.Technol. 240 (2017) 1–11.
  • [12] H. Ji, J. Liu, B. Wang, et al., Numerical analysis andexperiment on cross wedge rolling and forging for enginevalves, J. Mater. Process. Technol. 221 (2015) 233–242.
  • [13] Y. Huo, Q. Bai, B. Wang, et al., A new application of unifiedconstitutive equations for cross wedge rolling of a high-speedrailway axle steel, J. Mater. Process. Technol. 223 (2015) 274–283.
  • [14] J. Bartnicki, Z. Pater, The aspects of stability in cross-wedgerolling processes of hollowed shafts, J. Mater. Process.Technol. 155–156 (2004) 1867–1873.
  • [15] J. Bartnicki, Z. Pater, Numerical simulation of three-rollscross-wedge rolling of hollowed shaft, J. Mater. Process.Technol. 164–165 (2005) 1154–1159.
  • [16] S. Urankar, M. Lovell, C. Morrow, Q. Li, K. Kawada,Establishment of failure conditions for the cross-wedgerolling of hollow shafts, J. Mater. Process. Technol. 177(2006) 545–549.
  • [17] S. Urankar, M. Lovell, C. Morrow, Q. Li, K. Kawada, Developmentof critical friction model for cross wedge rolling hollow shafts, J.Mater. Process. Technol. 177 (2006) 539–544.
  • [18] W. Peng, et al., Multi-wedge cross wedge rolling process of42CrMo4 large and long hollow shaft, Rare Metal Mater. Eng.45 (4) (2016) 836–842.
  • [19] R. Neugebauer, M. Kolbe, R. Glass, New warm formingprocesses to produce hollow shafts, J. Mater. Process.Technol. 119 (1–3) (2001) 277–282.
  • [20] R. Neugebauer, et al., Optimisation of processing routes forcross rolling and spin extrusion, J. Mater. Process. Technol.125 (2002) 856–862.
  • [21] C. Xu, G. Ren, Y. Qiu, Cross wedge rolling for forming hollow partwith equal inner diameter, Forg. Stamp. Tech. 30 (2005) 51–55.
  • [22] H. Ji, J. Liu, B. Wang, et al., Cross-wedge rolling of a 4Cr9Si2hollow valve: explorative experiment and finite elementsimulation, Int. J. Adv. Manuf. Tech. 77 (1–4) (2015) 15–26.
  • [23] H. Ji, J. Liu, B. Wang, et al., Constitutive relationship of 4Cr9Si2and technological parameters on the inner bore of crosswedge rolling for preform hollow valves, Int. J. Adv. Manuf.Tech. 86 (9–12) (2016) 1–13.
  • [24] C. Yang, Z. Hu, Research on the ovality of hollow shafts incross wedge rolling with mandrel, Int. J. Adv. Manuf. Tech. 83(1–4) (2016) 67–76.
  • [25] C. Yang, J. Ma, Z. Hu, Analysis and design of cross wedgerolling hollow axle sleeve with mandrel, J. Mater. Process.Technol. 239 (2017) 346–358.
  • [26] X. Huang, B. Wang, et al., Effect of mandrel diameter on non-circularity of hollow shafts in cross wedge rolling, ProcediaEng. 207 (2017) 2376–2381.
  • [27] X. Huang, B. Wang, et al., Investigation on the effect ofmandrels on hollow shafts in cross-wedge rolling, Int. J. Adv.Manuf. Tech. 102 (2019) 443–455.
  • [28] Z. Hu, K. Zhang, et al., Theory and Application of CrossWedge Rolling, Metallurgical Industry Press, 1996, pp. 41–44(In chinese).
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7002243d-8a3a-4499-94da-ad077be4cdce
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.