PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Heavy Metals in Soil and Plants During Revegetation of Coal Mine Spoil Tips and Surrounded Territories

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Coal mining in Donbas is a global problem as it causes the destabilization of ecological landscapes. Spoil tips, covering almost 52% of the territory, alter the topography of the land, affect the ecosystem, and decrease soil fertility. The soils become degraded and are unsuitable for agricultural use. The occupation of the Donetsk region by the Russian Federation has suspended the observation and research of man-made influence on this territory, which is a major concern for the scientific community. To reduce the negative impact of spoil tips, it is necessary to slow down the process of pyrite oxidation and the formation of toxic substances, as well as the migration of heavy metals due to erosion. Biological reclamation with grass and woody plants can help in achieving this goal. Another urgent issue is the constant supervision and assessment of the suitability of the bedrock of coal mines for agricultural use. The study investigated the total and mobile content of heavy metals in the rock samples from the “South Donbaska-1” mine, ordinary chernozem (background soil), and vegetation growing on the spoil tip. The results showed that the content of Co, Cr, Cu, and Fe in the rock of the spoil tip is higher than in the background soils. The content of heavy metals gradually decreases as the distance from the spoil tip increases. The content of Pb in ordinary chernozem and rock is practically the same, indicating its active migration. An analysis of the biomass of plant samples growing on the spoil tip showed that the content of Co, Cu, and Zn was within the limits of the threshold limiting values. However, the content of other studied elements exceeded the permissible norms. The research results provide information on the ecological state of the spoil tip and can be used for recreational as well as reclamation works in these areas.
Rocznik
Strony
234--245
Opis fizyczny
Bibliogr. 80 poz., rys., tab.
Twórcy
  • National University of Life and Environmental Sciences of Ukraine, Geroiv Oboroni 15, 03041 Kyiv, Ukraine
  • Pavlo Tychyna Uman State Pedagogical University, Sadova 2, 20300, Uman, Ukraine
  • Higher Educational Institution “Podillia State University”, Shevchenko 13, 31302, Kamenets-Podolsky, Ukraine
  • Higher Educational Institution “Podillia State University”, Shevchenko 13, 31302, Kamenets-Podolsky, Ukraine
autor
  • Pavlo Tychyna Uman State Pedagogical University, Sadova 2, 20300, Uman, Ukraine
  • Kamianets-Podilskyi National University named after Ivan Ohienko, Ogienka 61, 31302, Kamenets-Podolsky, Ukraine
autor
  • National University of Life and Environmental Sciences of Ukraine, Geroiv Oboroni 15, 03041 Kyiv, Ukraine
  • National University of Life and Environmental Sciences of Ukraine, Geroiv Oboroni 15, 03041 Kyiv, Ukraine
  • National University of Life and Environmental Sciences of Ukraine, Geroiv Oboroni 15, 03041 Kyiv, Ukraine
  • Lulea University of Technology, Forskargatan 1, 93187, Skelleftea, Sweden
Bibliografia
  • 1. Abuova, A.B., Rebezov, M.B., Mukhamedyarova, L.G. et. al. 2021. Results of Studies of Wheat Bread for Lead Content Using the Additive Method. IOP Conf. Ser. Earth Environ. Sci., 677, 052050. DOI: 10.1088/1755-1315/677/5/052050
  • 2. Artemov, I.A., Popov, Yu.V., Sharova, T.V. 2022. Mineralo-petrographic zonation of the burning terrycones of the sand-clay composition of eastern Donbas. Successes of modern natural science, (11). DOI: 10.17513/use.37936
  • 3. Beregniak, E., Beregniak, M., Myronycheva, O. et. al. 2023. Ecological Analysis of the Current State of Forest Resources in Forest Steppe of Ukraine. J. of Ecological Engineering, 24(1), 87–96. DOI: 10.12911/22998993/155951
  • 4. Biswas, A., Hendry, M.J., Essilfie-Dughan, J. et. al. 2022. Geochemistry of zinc and cadmium in coal waste rock, Elk Valley, British Columbia, Canada. Applied Geochemistry, 136. DOI: 10.1016/j.apgeochem.2021.105148
  • 5. Bondar, V., Makarenko, N. 2019. Impact of winter wheat cultivation technologies on lead accumulation and translocation. Biological Resources and Nature Management, 11(1–2), 41–49. DOI: 10.31548/bio2018.03.030 (in Ukrainian)
  • 6. Bondar, V.S., Fursa, A.V., Gumentyk, M.Ya., Svystunova, I.V. 2020. Climate Change: Apocalyptic Prognosis and Reality. Ukrainian Journal of Ecology, 10(2), 273–278. DOI: 10.15421/2020_96
  • 7. Bulygin, S.Yu., Tonkha, O.L., Vitvitskyi, S.V., Kucher, L.I., Bulany, O.V. 2020. Evaluation and management of soil quality. Vinnychenko Publishing House, 478.
  • 8. Cherkasova, E.I., Rebezov, M.B., Shariati, M.A. et. al. 2021. Monitoring the Stability of the Results of Studies of Chilled River Fish for Cadmium Content Using the Method of Additions. IOP Conf. Ser. Earth Environ. Sci., 677, 052060. DOI: 10.1088/1755-1315/677/5/052060
  • 9. Das, N., Vimala, R., Karthika, P. 2008. Biosorption of heavy metals – an overview. Indian J. of Biotechnology, 7, 159–169.
  • 10. Dold, B. 2017. Acid rock drainage prediction: A critical review. J. of Geochemical Exploration, 172, 120–132. DOI: 10.1016/j.gexplo.2016.09.014
  • 11. Doulati, A.F., Jodeiri S.B., Bagheri, M., Soleimani, E. 2010. Investigation of pyrite oxidation and acid mine drainage characterization associated with Razi active coal mine and coal washing waste dumps in the Azad shahr-Ramian region, northeast Iran. Environmental Earth Scienceshttps://link.springer.com/journal/12665(61). DOI: 10.1007/s12665-010-0469-7
  • 12. Felix-Henningsen, P., Urushadze, T., Steffens, D., Kalandadze, B., Narimanidze, E. 2010. Uptake of heavy metals by food crops from highly-polluted Chernozem-like soils in an irrigation district south of Tbilisi, eastern Georgia. Agronomy Research, 8(1), 781–795.
  • 13. France, J., Thornley, J.H.M. 2007. Mathematical models in agriculture. London: Butterworths, 335.
  • 14. Forghani, T.G., Rubinos, D., Kelm, U., Ghadimi, S. 2023. Environmental and human health risks of potentially harmful elements in mining-impacted soils: A case study of the Angouran Zn-Pb Mine. J. of Environmental Management, 334. DOI: 10.1016/j.jenvman.2023.117470
  • 15. Goncharova, N.V. 2015. Structuring of complex coal deposits with respect to quality. J. of Mining Science, 51, 1220–1225. DOI: 10.1134/S1062739115060514
  • 16. Han, F.X., Singer, A. 2007. Trace Element Distribution In Arid Zone Soils. In: Biogeochemistry of Trace Elements in Arid Environments. Environmental Pollution, 13. DOI: 10.1007/978-1-4020-6024-3_2
  • 17. He, J., Chen, J.P. 2014. A comprehensive review on biosorption of heavy metals by algal biomass: Materials, performances, chemistry, and modeling simulation tools. Bioresource Technology, 160, 67–78. DOI: 10.1016/j.biortech.2014.01.068
  • 18. Imeri, R., Kullaj, E., Duhani, E., Millaku, L. 2019. Impact of rootstock on heavy metal bioaccumulation in apple plant grown near an industrial source in Obiliq, Kosovo. Agronomy Research, 17(1), 100–110. DOI: 10.15159/AR.19.012
  • 19. Islam, K., Yokoi, R., Motoshita, M., Murakami, S. 2022. Ecological footprint accounting of mining areas and metal production of the world. Resources Conservation and Recycling, 183. DOI: 10.1016/j.resconrec.2022.106384
  • 20. Jamieson, H.E., Walker, S.R., Parsons, M.B. 2015. Mineralogical characterization of mine waste. Applied Geochemistry, 57, 85–105. DOI: 10.1016/j.apgeochem.2014.12.014
  • 21. Jiaorong, L., Han L., Yongsheng X. 2020. Impact of rock fragment size on erosion process and micro-topography evolution of cone-shaped spoil heaps. Geomorphology, 350. DOI: 10.1016/j.geomorph.2019.106936
  • 22. Kabata-Pendias, A., Pendias, H. 2010. Trace Elements in Soil and Plants. CRC Press, Boca Raton, FL. DOI: 10.1201/b10158
  • 23. Kachanovska, L.O., Kondakova, M.A. 2017. Agroecological assessment of soils of administrative area of the Herson regions. Scientific reports of NULES of Ukraine, 6(70). DOI: 10.31548/dopovidi2017.06.004 (in Ukrainian)
  • 24. Kachmar, N.V., Snitynskyi, V.V., Dydiv, A.I. 2018. Influence of fertilizers and meliorants on the phytoproductivity of white cabbage dining in case soil contamination lead. Plant and Soil Science, (268), 329–338. agriculturalscience.com.ua/web/uploads/pdf/10877-23570-1-SM.pdf (in Ukrainian)
  • 25. Karpenko, V., Slobodyanyk, G., Ulianych, O. et. al. 2020. Combined application of microbial preparation, mineral fertilizer and bioadhesive in production of leek. Agronomy Research, 18(1), 148–162. DOI: 10.15159/AR.20.014
  • 26. Knysh, L., Karabyn, V. 2014. Heavy metals distribution in the waste pile rocks of Chervonogradska mine of the Lviv-Volyn coal basin. Pollution Research, 33(4), 663–670. (in Ukraine).
  • 27. Kravchenko, Y.S., Zhang, X., Song, C. et. al. 2022. Seasonal Dynamics of Organic Carbon and Nitrogen in Biomasses of Microorganisms in Arable Mollisols Affected by Different Tillage Systems. Land, 11, 486. DOI: 10.3390/land11040486
  • 28. Kříbek, B., Bičáková, O., Sýkorová, I. et. al. 2021. Experimental pyrolysis of metalliferous coal: A contribution to the understanding of pyrometamorphism of organic matter and sulfides during coal waste heaps fires. International J. of Coal Geology, 245. DOI: 10.1016/j.coal.2021.103817
  • 29. Król, A., Mizerna, K., Bożym, M. 2020. An assessment of pH-dependent release and mobility of heavy metals from metallurgical slag. J. of Hazardous Materials, 384, 121502. DOI: 10.1016/j.jhazmat.2019.121502
  • 30. Korzhenevska, P.O., Sharamok, T.S., Marenkov, O.N. 2021.Content of heavy metals in tsyogorychk fishery of Dnipropetrovsk region. Scientific reports of NULES of Ukraine, 2(90). (in Ukrainian)
  • 31. Kotaiah, D., Kiran, R. 2022. Numerical Analysis of High Wall and Dumps Slope Stability. J. of Mines, Metals and Fuels, 70(6). DOI: 10.18311/jmmf/2022/30801
  • 32. Kucher, L.I. 2018. Estimation of potasium reserves in zonal chernozemic soils of Ukraine’s forest-steppe Polish Journal of Soil Sciens., 51, 1. DOI: 10.17951/pjss.2018.51.1.83
  • 33. Kucher, L., Poltoretskyi S., Vasylenko, O., et. al. 2022. Peculiarities of the Primary Process of the Soil Formation on the Mine Rock Dumps under the Influence of Biotic Factors. J. of Ecological Engineering, 23(11), 101–108. DOI: 10.12911/22998993/153399
  • 34. Kuramshina, N., Rebezov, M., Kuramshin, E. et. al. 2018. Heavy Metals Contamination of Soil in Urban Areas of Southern Ural Region of Russia. International J. of Engineering and Technology, 7(4.42), 14–18.
  • 35. Kuramshina, N., Rebezov, M., Kuramshin, E. et. al. 2019. Heavy metals content in meat and milk of orenburg region of Russia. International J. of Pharmaceutical Research, 11(1), 1031–1035.
  • 36. Landa, P., Cyrusova, T., Jerabkova, J. et. al. 2016. Effect of Metal Oxides on Plant Germination: Phytotoxicity of Nanoparticles, Bulk Materials, and Metal Ions. Water, Air & Soil Pollution, 227, 448. DOI: 10.1007/s11270-016-3156-9
  • 37. Lin, H., Tang, Y., Dong, Y. et. al. 2022. Characterization of heavy metal migration, the microbial community, and potential bioremediating genera in a waste-rock pile field of the largest copper mine in Asia. J. of Cleaner Production, 351. DOI: 10.1016/j.jclepro.2022.131569
  • 38. Makarenko, N.A., Budak, O.O. 2017. Improvement of the environmental monitoring system rural areas which are located in the zone of influence of municipal solid waste landfills. Biological Resources and Nature Management, 9, 5–6, 89–97. (in Ukrainian)
  • 39. Mazhayskiy, Yu.A., Guseva, T.M., Kurchevskiy, S.M., Vcherashnyaya, V.V. 2022. Agrochemical methods for reducing the translocation ability of heavy metals in sod-podzolic soil. Agronomy Research, 20(2), 310–317. DOI: 10.15159/AR.22.014
  • 40. Mianovski, A., Butuzova, L., Radko, T., Turchanina, O. 2005. Thermokinetic analysis of the decomposition of Ukrainian coals from the Donetsk Basin. Bulletin of Geosciences, 80, 1, 39–43 www.researchgate.net/publication/287422798
  • 41. Miniailo, N.V. 2018. Assessment methods of ecological condition of agrolandscapes. Biological Resources and Nature Management, 10(3–4), 92–97. DOI: 10.31548/bio2018.03.011 (in Ukrainian)
  • 42. Munir, N., Jahangeer, M., Bouyahya, A. et. al. 2022. Heavy metal contamination of natural foods is a serious health issue: A review. Sustainability (Switzerland), 14(1), 161. DOI: 10.3390/su14010161
  • 43. Nobis, B., Kenyon, Z. 2022. Reclaiming waste rock piles at Bingham Canyon Mine. Proceedings of the International Conference on Mine Closure, 1, 15th International Conference on Mine Closure, Mine Closure Brisbane. DOI: 10.36487/ACG_repo/2215_77
  • 44. Оlkhovych O., Taran N., Hrechishkina S. et. al. Evaluation of hyper-tolerance of aquatic plants to metal nanoparticles. Journal of Ecological Engineering, 23(8), 249–259. doi. org/10.12911/22998993/150719
  • 45. Okhremchuk, I. 2018. Integrates assessment models for modeling of climate mitigation policies. Biological Resources and Nature Managment, 10(1–2), 73–78. (in Ukrainian)
  • 46. Opara, C.B., Kamariah, N., Spooren, J., Pollmann, K., Kutschke, S. 2023. Interesting Halophilic Sulphur-Oxidising Bacteria with Bioleaching Potential: Implications for Pollutant Mobilisation from Mine Waste. Microorganisms, 11(1). DOI: 10.3390/microorganisms11010222
  • 47. Petrova, T., Rudzisha, E., Alekseenko, A., Bech, J., Pashkevich, M. 2022. Rehabilitation of Disturbed Lands with Industrial Wastewater Sludge. Minerals, 12(3). DOI: 10.3390/min12030376
  • 48. Popovych, V., Kuzmenko, O., Voloshchyshyn, A., Petlovanyi, M. 2018. Influence of man-made edaphotopes of the spoil heap on biota. E3S Web of Conferences, 60. DOI: 10.1051/e3sconf/20186000010
  • 49. Qi, Li, Wenbin, Fei, Xuehao, Liu et. al. 2014Challenging combination of CO2 geological storage and coal mining in the Ordos basin, China Greenhouse Gases. Science and Technology, 4(4). DOI: 10.1002/ghg.1408
  • 50. Rebezov, M.B., Shariati, M.A., Ryskina, E.A. et. al. 2020. Monitoring the Research Results on the Toxic Elements Content (Lead, Cadmium and Arsenic) in Food. IOP Conf. Ser. Earth Environ. Sci., 613, 012123. DOI: 10.1088/1755-1315/613/1/012123
  • 51. Rebezov, M.B., Shariati, M.A., Shinkarev, I.K. et. al. 2021a. Results of Comparative Research Methods for Arsenic Content in Meat Samples of Broiler Chickens. IOP Conf. Ser. Earth Environ. Sci., 677, 052053. DOI: 10.1088/1755-1315/677/5/052053
  • 52. Rebezov, M.B., Kudryavtseva, T.M., Meshcheryakova, G.V. et. al. 2021b. Control of the Stability of the Results of Studies of Cadmium Content Using the Method of Additions in Cow’s Milk Samples. IOP Conf. Ser.Earth Environ. Sci., 677, 052051. DOI: 10.1088/1755-1315/677/5/052051
  • 53. Rebezov, M.B., Assirzhanova, Z.B., Dautova, A. et. al. 2021c. Control by the Accuracy of the Results of Studies for the Lead Content in Samples Applying the Microwave Laboratory System PLP-01M. IOP Conf. Ser. Mater. Sci. Eng., 1047, 012188. DOI: 10.1088/1757-899x/1047/1/012188
  • 54. Ruban, Yu., Illienko, V., Nesterova, N., Pareniuk, O., Shavanova, K. 2017. Estimation of the effect of radionuclide contamination on Vicia sativa L. induction of chlorophyll fluorescence parameters using “Floratest” optical biosensor,” Proc. SPIE 10592, Biophotonics-Riga, 105920M. DOI: 10.1117/12.2297563
  • 55. Reshetnyak, V.N., Zakrutkin, V.E. Gibkov, E.V. 2022. Integral assessment of river sediments technogenic contamination within Eastern Donbass coal-mining area Theoretical and Applied Ecology, 4. DOI: 10.25750/1995-4301-2022-4-080-087
  • 56. Schubert, J., Radeke, C., Fery, A., Chanana, M. 2019. The role of pH, metal ions and their hydroxides in charge reversal of protein-coated nanoparticles. Physical Chemistry Chemical Physics, 21(21), 11011–11018. DOI: 10.1039/C8CP05946B
  • 57. Sidkina, E., Soldatova, E., Cherkasova, E. et. al. 2022. Fate of Heavy Metals in the Surface Water- Dump Rock System of the Mine Lupikko I (Karelia): Field Observations and Geochemical Modeling. Water (Switzerland), 14(21). DOI: 10.3390/w14213382
  • 58. Singh, B.R., Gupta, S.K., Azaizeh, H. et. al. 2011. Safety of food crops on land contaminated with trace elements. J. of the Science of Food and Agriculture, 91(8), 1349–66. DOI: 10.1002/jsfa.4355
  • 59. Sintorini, M.M., Widyatmoko, H., Sinaga, E., Aliyah, N. 2021. Effect of pH on metal mobility in the soil. IOP Conf. Series: Earth and Environmental Science, 737, 012071. DOI: 10.1088/1755-1315/737/1/012071
  • 60. Shi-Lei, Y., Xin, L. 2022. Study on Multi-Indicator Quantitative Risk Evaluation Methods for Different Periods of Coal Spontaneous Combustion in Coal Mines Combustion. Science and Technology. DOI: 10.1080/00102202.2022.2121608
  • 61. Skok, S. 2018. Spatial heterogeneiny of soil contamination of urban systems with heavy metals. Scientific reports of NULES of Ukraine, 3(73). DOI: 10.31548/dopovidi2018.03.005 (in Ukrainian)
  • 62. Slobodianyk, H., Zhilyak, I., Mostovyak, I., Shchetyna, S., Zabolotnyi, O. 2022. Effectiveness of different groups of preparations for pre-sowing treatment of winter wheat seeds. Scientific Horizons, 25(9), 53–63. DOI: 10.48077/scihor.25(9).2022.53-63
  • 63. Small mining encyclopedia. 2004: 1t. za red. V.S. Biletskoho. Donetsk: Skhidnyi vydavnychyi dim, 640. (in Ukrainian)
  • 64. Sperdouli, I. 2022. Heavy Metal Toxicity Effects on Plants. Toxics, 10, 715. DOI: 10.3390/toxics10120715
  • 65. Tretyak, L.N., Rebezov, M.B., Korablev, A.V. et. al. 2021. Control by the Accuracy of the Results of Studies for the Cadmium Content in Samples Applying the Microwave Laboratory System PLP-01M. IOP Conf. Ser. Mater. Sci. Eng., 1047, 012183. DOI: 10.1088/1757-899x/1047/1/012183
  • 66. Tubis, A., Werbińska-Wojciechowska, S., Wroblewski, A. 2020. Risk assessment methods in mining industry-A systematic review. Applied Sciences (Switzerland), 10(15). DOI: 10.3390/app10155172
  • 67. Ulianych, О.І., Schetyna, S.V., Slobodianyk, G.Ya., et. al. 2018. Ecological Status of Soils and Vegetable Products in Cherkasy Region. Ukrainian J. of Ecology, 8(2), 10–15.
  • 68. Vaziri, V, Sayadi, A.R., Parbhakar-Fox, A., Mousavi, A., Monjezi, M. 2022. Improved mine waste dump planning through integration of geochemical and mineralogical data and mixed integer programming: Reducing acid rock generation from mine waste. J. of Environmental Management, 3091. DOI: 10.1016/j.jenvman.2022.114712
  • 69. Voitsitskiy, V.M., Midyk, S.V., Poltavchenko, T.V. et. al. 2019. Ecosystem monitoring: goals and necessity, role of bioindication. Biological Resources and Nature Management, 11(3–4), 39–46. DOI: 10.31548/bio2019.03.005 (in Ukrainian)
  • 70. Xiang, Y., Xiang, Y., Wang, L. Zhang Z. 2016. Effects of Modified Excess Sludge on the Growth of Artemisia ordosica and Transformation of Heavy Metals. Water Air Soil Pollut., 227, 123. DOI: 10.1007/s11270-016-2818-y
  • 71. Xiaoyang L., Wei Z., Zhongke B. 2016. Vegetation coverage change and stability in large open-pit coal mine dumps in China during 1990-2015. Ecological Engineering, 95, 447–451. DOI: 10.1016/j.ecoleng.2016.06.051
  • 72. Yamborko, N.A., Iutynska, G.А., Svistunova, I.V. 2018. Biodestruction of Hexahorcyclohexane Isomers by Natural and Artificial Created Microbial Associations. Mikrobiolohichnyi Zhurnal, 80(5), 15–24. DOI: 10.15407/microbiolj80.05.015
  • 73. Yakovenko, A.V. 2017. Geochemistry of heavy metals in soils of the zone of influence of the non-ferrous metallurgy enterprises Scientific reports of NULES of Ukraine, 6(10). DOI: 10.31548/dopovidi2017.06.002 (in Ukrainian)
  • 74. Yao, H., Lu, J., Yuan, X. 2014. Concentrations, Bioavailability, and Spatial Distribution of Soil Heavy Metals in a Long-Term Wastewater Irrigation Area in North China. CLEAN - Soil, Air, Water, 42. DOI: 10.1002/clen.201200574
  • 75. Yermishev, O.V., Mudrak, O.V. 2019. Environmental and comparison analysis of functional health of men of different age groups in radiation contaminated and conditionally pure regions. Biological Resources and Nature Managment, 11(5–6), 108–118. DOI: 10.31548/bio2019.04.012 (in Ukrainian)
  • 76. Zhang, X., Dayton, E.A., Basta, N.T. 2020. Predicting the modifying effect of soils on arsenic phytotoxicity and phytoaccumulation using soil properties or soil extraction methods. Environmental Pollution, 263. DOI: 10.1016/j.envpol.2020.114501
  • 77. Zykova, I., Rebezov, M., Maksimiuk, N., Kuramshina, N. 2016. The interaction of metals with humic acid of activated sludge and biological treatment facilities sludge. International J. of Chem. Tech. Research, 9(3), 372–378.
  • 78. Zykova, I., Maksimuk, N., Rebezov, M. et. al. 2019. Interaction between heavy metals and microorganisms during wastewater treatment by activated sludge. ARPN J. of Engineering and Applied Sciences, 14(11), 2139–2145.
  • 79. Zhenqi, Hu, Qing, Xia. 2017. An integrated methodology for monitoring spontaneous combustion of coal waste dumps based on surface temperature detection. Applied Thermal Engineering, 122, 27–38. DOI: 10.1016/j.applthermaleng.2017.05.019
  • 80. Żukowska, T., Chomczyńska, M., Myszura, M., 2021. Influence of diversified anthropogenic pressure on heavy metals contents in soils and plants of garden allotments. J. of Physics: Conference Series, 1736, 1. DOI: 10.1088/1742-6596/1736/1/012055
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7001b30f-9280-47bb-be26-2e433d081679
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.