PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

A new method for generating virtual models of nonlinear helical springs based on a rigorous mathematical model

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents a new method for generating nonlinear helical spring geometries based on a rigorous mathematical formulation. The model was developed for two scenarios for modifying a spring with a stepped helix angle: for a fixed helix angle of the active coils and for a fixed overall height of the spring. It allows the development of compression spring geometries with non-linear load-deflection curves, while maintaining predetermined values of selected geometrical parameters, such as the number of passive and active coils and the total height or helix angle of the linear segment of the active coils. Based on the proposed models, Python scripts were developed that can be implemented in any CAD software offering scripting capabilities or equipped with Application Programming Interfaces. Examples of scripts that use the developed model to generate the geometry of selected springs are presented. FEM analyses of quasi-static compression tests carried out for these spring models showed that springs with a wide range of variation in static load-deflection curves, including progressive springs with a high degree of nonlinearity in characteristics, can be obtained using the proposed tools. The obtained load-deflection curves can be described with a high degree of accuracy by power function. The proposed method can find applications in both machine design and spring manufacturing.
Rocznik
Strony
96--111
Opis fizyczny
Bibliogr. 26 poz., fig., tab.
Twórcy
  • AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, Department of Machine Design and Maintenance, Poland
  • AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, Department of Machine Design and Maintenance, Poland
autor
  • AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, Department of Machine Design and Maintenance, Poland
Bibliografia
  • [1] Arshad, A., Nazir, A., & Jeng, J.-Y. (2022). Design and performance evaluation of multi-helical springs fabricated by Multi Jet Fusion additive manufacturing technology. International Journal of Advanced Manufacturing Technology, 118, 195-206. https://doi.org/10.1007/s00170-021-07756-2
  • [2] Bai, J.-B., Liu, T.-W., Wang, Z.-Z., Lin, Q.-H., Cong, Q., Wang, Y.-F., Ran, J.-N., Li, D., & Bu, G.-Y. (2021). Determining the best practice – Optimal designs of composite helical structures using Genetic Algorithms. Composite Structures, 268, 113982. https://doi.org/10.1016/j.compstruct.2021.113982
  • [3] Chandravanshi, M.L., & Mukhopadhyay, A.K. (2017). Analysis of variations in vibration behavior of vibratory feeder due to change in stiffness of helical springs using FEM and EMA methods. Braz. Soc. Mech. Sci. Eng (vol. 39, pp. 3343–3362). Springer. https://doi.org/10.1007/s40430-017-0767-z
  • [4] Cimolai, G., Dayyani, I., & Qin, Q. (2022). Multi-objective shape optimization of large strain 3D helical structures for mechanical metamaterials. Materials & Design, 215, 110444. https://doi.org/10.1016/j.matdes.2022.110444
  • [5] Ding, X., & Selig J.-M. (2004). On the compliance of coiled springs. International Journal of Mechanical Sciences, 46(5), 703-727. https://doi.org/10.1016/j.ijmecsci.2004.05.009
  • [6] Fatchurrohman, N., & Chia, S.-T. (2017). Performance of hybrid nano-micro reinforced mg metal matrix composites brake calliper: simulation approach. Materials Science and Engineering, 257, 012060. https://doi:10.1088/1757-899X/257/1/012060
  • [7] Geuzaine, C., Remacle, J.-F. (2009). Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities: THE GMSH PAPER, International Journal for Numerical Methods in Engineering, 79(11), 1309–1331. https://doi.org/10.1002/nme.2579
  • [8] Gobbi, M., & Mastinu, G. (2001). On the optimal design of composite material tubular helical springs. Meccanica, 36, 525-553. https://doi.org/10.1023/A:1015640909013
  • [9] Gu, Z., Hou, X., Keating, E., & Ye, J. (2020). Non-linear finite element model for dynamic analysis of high-speed valve train and coil collisions. International Journal of Mechanical Sciences, 173, 105476. https://doi.org/10.1016/j.ijmecsci.2020.105476
  • [10] Gzal M., Groper, M., & Gendelman, O. (2017) Analytical, experimental and finite element analysis of elliptical cross-section helical spring with small helix angle under static load. International Journal of Mechanical Sciences, 130, 476-486. https://doi.org/10.1016/j.ijmecsci.2017.06.025
  • [11] Liberman, K. (2006). Optimierung von Schraubendruckfedern. Technische Akademie Esslingen
  • [12] Liu, H., & Kim, D. (2009). Effects of end Coils on the Natural Frequency of Automotive Engine Valve Springs. International. Journal of Automotive Technology, 10(4), 413–420.
  • [13] https://doi.org/10.1007/s12239-009-0047-8
  • [14] Meissner M., & Schorcht H.-J. (2007). Metallfedern - Grundlagen, Werkstoffe, Berechnung, Gestaltung und Rechnereinsatz. Springer. https://doi.org/10.1007/978-3-540-49869-8
  • [15] Michalczyk, K. (2015). Analysis of lateral vibrations of the axially loaded helical spring. Journal of Theoretical and Applied Mechanics, 53(3), 745–755. https://doi.org/10.15632/jtam-pl.53.3.745
  • [16] Nazir, A., Ali, M., Hsieh, CH., & Jeng J.W. (2020). Investigation of stiffness and energy absorption of variable dimension helical springs fabricated using multijet fusion technology. The International Journal of Advanced Manufacturing Technology, (vol. 110, pp. 2591–2602). Springer. https://doi.org/10.1007/s00170-020-06061-8
  • [17] Pöllänen, I., & Martikka, H. (2010). Optimal re-design of helical springs using fuzzy design and FEM. Advances in Engineering Software, 41(3), 410-414. https://doi.org/10.1016/j.advengsoft.2009.03.010
  • [18] Rahul, M.S., & Rameshkumar, K. (2021). Multi-objective optimization and numerical modelling of helical coil spring for automotive application. Materialstoday: Proceedings, 46(10), 4847–4853. https://doi.org/10.1016/j.matpr.2020.10.324
  • [19] Sahu, D. K., Dandsena, J., Mahapatra, T. R., & Mishra. D. (2022). Design and Characterization of Progressive Coil Spring for Suspension Systems. Journal of The Institution of Engineers (India): Series C, 103, 705–715. https://doi.org/10.1007/s40032-022-00817-9
  • [20] Schorcht, H.-J., Kletzin, U., Micke, D., Wauro, F. (1998). Entwicklung eines modularen, wissensbasierten CAD/FEMSystems zur integrierten Gestaltung und Berechnung von Federn und Federanordnungen. In Pahl G. (Ed.) Professor Dr.-lng. E.h. Dr.-lng. Wolfgang Beitz zum Gedenken Sein Wirken und Schaffen, (pp. 543-557). Springer-Verlag Berlin Heidelberg. https://doi.org/10.1007/978-3-662-41164-3
  • [21] Taktak, M., Dammak, F., Abid, S., & Haddar, M. (2008). A finite element for dynamic analysis of a cylindrical isotropic helical spring. Journal of Mechanics, Materials and Structures, 3(4), 641–658. https://doi.org/10.2140/jomms.2008.3.641
  • [22] Warzecha, M., Michalczyk, K., & Machniewicz, T. (2022). A novel slotted cylinder spring geometry with an improved energy storing capacity. Arabian Journal for Science and Engineering, 47, 15539–15549. https://doi.org/10.1007/s13369-022-06692-x
  • [23] Wittrick W.-H. (1966). On elastic wave propagation in helical springs. International Journal of Mechanical Sciences, 8(1), 25-47. https://doi.org/10.1016/0020-7403(66)90061-0
  • [24] Yang, C.-J., Zhang, W.H., Ren, G.X., & Liu, X.-Y. (2014). Modeling and dynamics analysis of helical spring under compression using a curved beam element with consideration on contact between its coils. Meccanica, (vol. 49, pp. 907–917). Springer. https://doi.org/10.1007/s11012-013-9837-1
  • [25] Zhao, J., Gu, Z., Yang, Q., Shao, J., & Hou, X. (2023). Dynamic Finite Element Model Based on Timoshenko Beam Theory for Simulating High-Speed Nonlinear Helical Springs. Sensors, 23(7), 3737. https://doi.org/10.3390/s23073737
  • [26] Zhuo, Y., Qi, Z., Zhang, J., & Wang, G. (2022). A geometrically nonlinear spring element for structural analysis of helical springs. Archive of Applied Mechanics, 92, 1789–1821. https://doi.org/10.1007/s00419-022-02147-9
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6fff225f-f3ba-4f39-959e-e6ede5452e3a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.