PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

LC-MS/MS monitoring for explosives residues and OGSR with diverse ionization temperatures in soil & hands : 30 minutes for extraction + elution

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A fast LC-APCI-MS/MS screening/confirmation method was developed and validated for trace analyses of 18 analytes which are explosives and organic gun shot residues including the challenging ones with diverse ionization conditions, in soil and on hands. (+) and (−) ionization modes were used after a single-step, low-volume solvent extraction procedure developed using methanol. Tape-lifting, stub, alcohol wipes, cotton bud were compared for collecting the residues from hands of a shooter. Tape-lifting and stub gave the highest recoveries and tape-lifting was chosen. Gradient elution system using ammonium chloride:methanol was developed. Whole procedure lasted approximately 30 min, was validated in both matrices, applied to real samples as post-blast residues, smokeless powder and the hands of a shooter, after shooting. Most of the recoveries were >80% and since all the precisions were <15%, quantitation was possible for all. Limit of Detection (LOD) and Limit of Quantification (LOQ) values were: 0.2–54.1 and 0.3–190.0 ngg⁻¹ in soil, and 0.2–132.3 and 1.1–355.0 ngg⁻¹ in tape-lift.
Rocznik
Strony
304--314
Opis fizyczny
Bibliogr. 38 poz., rys., wykr.
Twórcy
autor
  • Department of Forensic Sciences, Faculty of Engineering and Natural Sciences, Kutahya Health Sciences University, Kutahya, Turkey
  • Institute of Forensic Sciences & Legal Medicine, Istanbul University-Cerrahpasa, Cerrahpasa, Istanbul, Turkey
  • R & D Center of SEM Laboratuar Cihazları Pazarlama San. ve Tic. Inc., Istanbul, Turkey
  • R & D Center of SEM Laboratuar Cihazları Pazarlama San. ve Tic. Inc., Istanbul, Turkey
autor
  • Rumeli University, Vocational School of Health Services, Mehmet Balci Campus, Istanbul, Turkey
Bibliografia
  • 1. Gassner, A. L.; Ribeiro, C.; Kobylinska, J.; Zeichner, A.; Weyermann, C. Organic gunshot residues: observations about sampling and transfer mechanisms. Forensic Sci. Int. 2016, 266, 369–78; https://doi.org/10.1016/j.forsciint.2016.06.029.
  • 2. Taudte, R. V.; Roux, C.; Bishop, D.; Blanes, L.; Doble, P.; Beavis, A. Development of a UHPLC method for the detection of organic gunshot residues using artificial neural networks. Anal. Methods 2015, 7(18), 7447–54; https://doi.org/10.1039/c5ay00306g.
  • 3. Chatterjee, S.; Deb, U.; Datta, S.; Walther, C.; Gupta, D. K. Common explosives (TNT, RDX, HMX) and their fate in the environment: emphasizing bioremediation. Chemosphere 2017, 184, 438–51; https://doi.org/10.1016/j.chemosphere.2017.06.008.
  • 4. Pichtel, J. Distribution and fate of military explosives and pro-pellants in soil: a review. Appl. Environ. Soil Sci. 2012, 2012; https://doi.org/10.1155/2012/617236.
  • 5. Ippen, H. Toxicity and metabolism of cignolin. Dermatologica 1959, 119, 211–9.
  • 6. Holmgren, E.; Ek, S.; Colmsjö, A. Extraction of explosives from soil followed by gas chromatography-mass spectrometry analysis with negative chemical ionization. J. Chromatogr. A. 2012, 1222, 109–15; https://doi.org/10.1016/j.chroma.2011.12.014.
  • 7. Agrawal, J. P. Some new high energy materials and their formulations for specialized applications. Propellants, Explos. Pyrotech. Oct. 2005, 30(5), 316–28; https://doi.org/10.1002/prep.200500021.
  • 8. Badgujar, D. M.; Talawar, M. B.; Asthana, S. N.; Mahulikar, P. P. Advances in science and technology of modern energetic materials: an overview. Elsevier 2008, 151, 289–305; https://doi.org/10.1016/j.jhazmat.2007.10.039.
  • 9. MacCrehan, W.; Reardon, M. R. A qualitative comparison of smokeless powder measurements. J. Forensic Sci. 2002, 47(5), 1–5.
  • 10. Dalby, O.; Butler, D.; Birkett, J. W. Analysis of gunshot residue and associated materials – a review. J. Forensic Sci. 2010, 55(4), 924–43; https://doi.org/10.1111/j.1556-4029.2010.01370.x.
  • 11. Taudte, R. V.; Beavis, A.; Blanes, L.; Cole, N.; Doble, P.; Roux, C. Detection of gunshot residues using mass spectrometry. Biomed. Res. Int. 2014, 2014; https://doi.org/10.1155/2014/965403.
  • 12. Benito, S.; Abrego, Z.; Sánchez, A.; Unceta, N.; Goicolea, M. A.; Barrio, R. J. Characterization of organic gunshot residues in lead-free ammunition using a new sample collection device for liquid chromatography-quadrupole time-of-flight mass spectrometry. Forensic Sci. Int. 2015, 246, 79–85. https://doi.org/10.1016/j.forsciint.2014.11.002.
  • 13. Laza, D.; Nys, B.; De Kinder, J.; Kirsch-De Mesmaeker, A.; Moucheron, C. Development of a quantitative LC-MS/MS method for the analysis of common propellant powder stabilizers in gunshot
  • residue. J. Forensic Sci. 2007, 52(4), 842–50. https://doi.org/10.1111/j.1556-4029.2007.00490.x.
  • 14. Maitre, M.; Kirkbride, K. P.; Horder, M.; Roux, C.; Beavis, A. Current perspectives in the interpretation of gunshot residues in forensic science: a review. Forensic Sci. Int. 2017, 270, 1–11; https://doi.org/10.1016/j.forsciint.2016.09.003.
  • 15. Thomas, J. L.; Lincoln, D.; McCord, B. R. Separation and detection of smokeless powder additives by ultra performance liquid chromatography with tandem mass spectrometry (UPLC/MS/MS). J. Forensic Sci. 2013, 58(3), 609–15; https://doi.org/10.1111/1556-4029.12096.
  • 16. Gassner, A. L.; Weyermann, C. LC-MS method development and comparison of sampling materials for the analysis of organic gunshot residues. Forensic Sci. Int. 2016, 264, 47–55. https://doi.org/10.1016/j.forsciint.2016.03.022.
  • 17. Zeichner, A.; Eldar, B.; Glattstein, B.; Koffman, A.; Tamiri, T.; Muller, D. Vacuum collection of gunpowder residues from clothing worn by shooting suspects, and their analysis by GC/TEA, IMS, and GC/MS. J. Forensic Sci. Sep. 2003, 48(5), 2002390. https://doi.org/10.1520/jfs2002390.
  • 18. MacCrehan, W. A.; Layman, M. J.; Secl, J. D. Hair combing to collect organic gunshot residues (OGSR). Forensic Sci. Int. 2003, 135(2), 167–73. https://doi.org/10.1016/S0379-0738(03)00207-X.
  • Acta Chromatographica 34 (2022) 3, 304–314 313 Unauthenticated | Downloaded 09/01/23 12:00 PM UTC
  • 19. Şener, H.; Anilanmert, B.; Cengiz, S. A fast method for monitoring of organic explosives in soil: a gas temperature gradient approach in LC-APCI/MS/MS. Chem. Pap. 2017, 71(5). https://doi.org/10.1007/s11696-016-0042-2.
  • 20. DeTata, D.; Collins, P.; McKinley, A. A fast liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QToF-MS) method for the identification of organic explosives and propellants.
  • Forensic Sci. Int. 2013, 233(1–3), 63–74. https://doi.org/10.1016/j.forsciint.2013.08.007.
  • 21. Ali, L.; Brown, K.; Castellano, H.; Wetzel, S. J. A study of the presence of gunshot residue in Pittsburgh Police Stations using SEM/EDS and LC-MS/MS. J. Forensic Sci. 2016, 61(4), 928–38. https://doi.org/10.1111/1556-4029.13077.
  • 22. Ochsenbein, U.; Zeh, M.; Berset, J. D. Comparing solid phase extraction and direct injection for the analysis of ultra-trace levels of relevant explosives in lake water and tributaries using liquid chromatography-electrospray tandem mass spectrometry. Chemosphere 2008, 72(6), 974–80. https://doi.org/10.1016/j.chemosphere.2008.03.004.
  • 23. Dalby, O.; Birkett, J. W. The evaluation of solid phase micro-extraction fibre types for the analysis of organic components in unburned propellant powders. J. Chromatogr. A. 2010, 1217(46), 7183–8. https://doi.org/10.1016/j.chroma.2010.09.012.
  • 24. Redouté Minzière, V.; Werner, D.; Schneider, D.; Manganelli, M.; Jung, B.; Weyermann, C.; Gassner, A. L. Combined collection and analysis of inorganic and organic gunshot residues. J. Forensic Sci. 2020, 65(4), 1102–13. https://doi.org/10.1111/1556-4029.14314.
  • 25. Muller, D.; Levy, A.; Vinokurov, A.; Ravreby, M; Shelef, R.; Wolf, E.; Eldar, B.; Glattstein, B. A novel method for the analysis of discharged smokeless powder residues. J. Forensic Sci. 2007, 52(1), 75–8. https://doi.org/10.1111/j.1556-4029.2006.00309.x.
  • 26. Northrop, D. M. Gunshot residue analysis by micellar electrokinetic capillary electrophoresis: assessment for application to casework. Part II. J. Forensic Sci. May 2001, 46(3), 560–72. https://doi.org/10.1520/JFS15003J.
  • 27. Mahoney, C. M.; Gillen, G.; Fahey, A. J. Characterization of gunpowder samples using time-of-flight secondary ion mass spectrometry (TOF-SIMS). Forensic Sci. Int. 2006, 158(1), 39–51. https://doi.org/10.1016/j.forsciint.2005.02.036.
  • 28. Kinghorn, R.; Milner, C.; Zweigenbaum, J. Analysis of trace residues of explosive materials by time-of-flight LC/MS. Agil. Technol. Appl. Note 2006, 1–18.
  • 29. Fu, X.; Zhang, Y.; Shi, S.; Gao, F.; Wen, D.; Li, W.; Liu, H.; et al. Fragmentation study of hexanitrostilbene by ion trap multiple mass spectrometry and analysis by liquid chromatography/mass spectrometry. Rapid Commun. Mass Spectrom. 2006, 20(19), 2906–14. https://doi.org/10.1002/rcm.2683.
  • 30. Irlam, R. C.; Parkin, M. C.; Brabazon, D. P.; Beardah, M. S.; O’Donnell, M.; Barron, L. P. Improved determination of femtogram-level organic explosives in multiple matrices using dual-sorbent solid phase extraction and liquid chromatography-high resolution accurate mass spectrometry. Talanta 2019, 203(May), 65–76. https://doi.org/10.1016/j.talanta.2019.05.047.
  • 31. Zhao, M.; Zhang, S.; Yang, C.; Xu, Y.; Wen, Y.; Sun, L.; Zhang, X.; et al. Desorption electrospray tandem MS (DESI-MSMS) analysis of methyl centralite and ethyl centralite as gunshot residues on skin and other surfaces. J. Forensic Sci. 2008, 53(4), 807–11. https://doi.org/10.1111/j.1556-4029.2008.00752.x.
  • 32. Schachel, T. D.; Stork, A.; Schulte-Ladbeck, R.; Vielhaber, T.; Karst, U. “Identification and differentiation of commercial and military explosives via high performance liquid chromatography – high resolution mass spectrometry (HPLC-HRMS), X-ray diffractometry (XRD) and X-ray fluorescence spectroscopy (XRF): towards a forensic s. Forensic Sci. Int. 2020, 308, 110180. https://doi.org/10.1016/j.forsciint.2020.110180.
  • 33. Song-im, N.; Benson, S.; Lennard, C. Evaluation of different sampling media for their potential use as a combined swab for the collection of both organic and inorganic explosive residues. Forensic Sci. Int. 2012, 222(1–3), 102–10. https://doi.org/10.1016/j.forsciint.2012.05.006.
  • 34. Hofstetter, C.; Maitre, M.; Beavis, A.; Roux, C. P.; Weyermann, C.; Gassner, A. L. A study of transfer and prevalence of organic gunshot residues. Forensic Sci. Int. 2017, 277, 241–51. https://doi.org/10.1016/j.forsciint.2017.06.013.
  • 35. Thompson, M.; Ellison, S. L. R.; Fajgelj, A.; Willetts, P.; Wood, R. Harmonized guidelines for the use of recovery information in analytical measurement. Pure Appl. Chem. 1999, 71(2), 337–48.
  • 36. European Commission, SANCO/3029/99 rev. 4 (11/07/2000) Residues: guidance for generating and reporting methods of analysis in support of pre-registration data requirements for Annex II (part A, Section 4) and Annex III (part A, Section 5) of Directive 91/414. Eur. Comm. 2000, 26, [Online]. Available: https://ec.europa.eu/food/sites/food/files/plant/docs/pesticides_ppp_app-proc_guide_res_pre-reg-cont-monitor.pdf.
  • 37. U. N. O. on Drugs, C. Laboratory, and S. Section Guidance for the Validation of Analytical Methodology and Calibration of Equipment Used for Testing of Illicit Drugs in Seized Materials and Biological Specimens: A Commitment to Quality and Continuous Improvement; United Nations Publications, 2009.
  • 38. Arndt, J.; Bell, S.; Crookshanks, L.; Lovejoy, M.; Oleska, C.; Tulley, T.; Wolfe, D.; et al. Preliminary evaluation of the persistence of organic gunshot residue. Forensic Sci. Int. 2012, 222(1–3), 137–45. https://doi.org/10.1016/j.forsciint.2012.05.011.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6ffeb697-60d6-4141-96d7-6b3335a0040b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.