Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We consider the following nonlinear nonlocal elliptic problem: [formula], where a, b > 0 are constants, λ > 0 is a parameter, α ∈ (0,3), and G ∈ C1 (R,R). By using variational methods, we establish the existence of least energy solutions for the above equation under conditions on the nonlinearity G we believe to be almost necessary. Some qualitative properties of the least energy solutions are also obtained
Wydawca
Czasopismo
Rocznik
Tom
Strony
art. no. 20230147
Opis fizyczny
Bibliogr. 25 poz.
Twórcy
autor
- School of Mathematics and Statistics, Hubei Engineering University, Xiaogan 432000, P.R. China
autor
- College of Technology, Hubei Engineering University, Xiaogan 432000, P.R. China
Bibliografia
- [1] G. Kirchhoff, Mechanik, Teubner, Leipzig, 1883.
- [2] J. L. Lions, On some questions in boundary value problems of mathematical physics, North-Holland Math. Stud. 30 (1978), 284–346, DOI: https://doi.org/10.1016/S0304-0208(08)70870-3.
- [3] R. Biswas and S. Tiwati, On a class of Kirchhoff-Choquard equations involving variable-order fractional ( )p x -Laplacian and without Ambrosetti-Rabinowitz type condition, Topol. Methods Nonlinear Anal. 58 (2021), no. 2, 403–439, DOI: https://doi.org/10.12775/TMNA.2020.072.
- [4] R. Biswas, S. Goyal, and K. Sreenadh, Multiplicity results for p-Kirchhoff modified quasilinear equations with Stein-Weiss type critical nonlinearity in RN, Differential Integral Equations 36 (2023), no. 3/4, 247–288, DOI: https://doi.org/10.57262/die036-0304-247.
- [5] C. Chen, Y. Kuo, and T. Wu, The Nehari manifold for a Kirchhoff type problem involving sign-changing weight functions, J. Differential Equations 250 (2011), no. 4, 1876–1908, DOI: https://doi.org/10.1016/j.jde.2010.11.017.
- [6] F. Faraci and C. Farkas, On a critical Kirchhoff-type problem, Nonlinear Anal. 192 (2020), 111679, DOI: https://doi.org/10.1016/j.na.2019.111679.
- [7] D. Lü, A note on Kirchhoff-type equations with Hartree-type nonlinearities, Nonlinear Anal. 99 (2014), 35–48, DOI: https://doi.org/10.1016/j.na.2013.12.022.
- [8] E. H. Lieb, Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation, Stud. Appl. Math. 57 (1977), no. 2, 93–105, DOI: https://doi.org/10.1002/sapm197757293.
- [9] E. H. Lieb and B. Simon, The Hartree-Fock theory for Coulomb systems, Comm. Math. Phys. 53 (1977), no. 3, 185–194, DOI: https://doi.org/10.1007/BF01609845.
- [10] R. Penrose, On gravity’s role in quantum state reduction, Gen. Relativity Gravitation 28 (1996), no. 5, 581–600, DOI: https://doi.org/10.1007/BF02105068.
- [11] P. L. Lions, The Choquard equation and related questions, Nonlinear Anal. 4 (1980), no. 6, 1063–1072, DOI: https://doi.org/10.1016/0362-546X(80)90016-4.
- [12] L. Ma and L. Zhao, Classification of positive solitary solutions of the nonlinear Choquard equation, Arch. Ration. Mech. Anal. 195 (2010), no. 2, 455–467, DOI: https://doi.org/10.1007/s00205-008-0208-3.
- [13] V. Moroz and J. Van Schaftingen, Ground states of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics, J. Funct. Anal. 265 (2013), no. 2, 153–184, DOI: https://doi.org/10.1016/j.jfa.2013.04.007.
- [14] R. Arora, J. Giacomoni, T. Mukherjee, and K. Sreenadh, n-Kirchhoff-Choquard equations with exponential nonlinearity, Nonlinear Anal. 186 (2019), 113–144, DOI: https://doi.org/10.1016/j.na.2019.01.006.
- [15] R. Arora, J. Giacomoni, T. Mukherjee, and K. Sreenadh, Polyharmonic Kirchhoff problems involving exponential non-linearity of Choquard type with singular weights, Nonlinear Anal. 196 (2020), 111779, DOI: https://doi.org/10.1016/j.na.2020.111779.
- [16] R. Arora, A. Fiscella, T. Mukherjee, and P. Winkert, Existence of ground state solutions for a Choquard double phase problem, Nonlinear Anal. Real World Appl. 73 (2023), 103914, DOI: https://doi.org/10.1016/j.nonrwa.2023.103914.
- [17] P. Chen and X. Liu, Ground states for Kirchhoff equation with Hartree-type nonlinearities, J. Math. Anal. Appl. 473 (2019), no. 1, 587–608, DOI: https://doi.org/10.1016/j.jmaa.2018.12.076.
- [18] D. Lü and S. Dai, A remark on Chern-Simons-Schrödinger equations with Hartree type nonlinearity, J. Nonlinear Var. Anal. 7 (2023), no. 3, 409–420, DOI: https://doi.org/10.23952/jnva.7.2023.3.06.
- [19] D. Lü and S. Dai, Existence and asymptotic behavior of solutions for Kirchhoff equations with general Choquard-type nonlinearities, Z. Angew. Math. Phys. 74 (2023), no. 6, 232, DOI: https://doi.org/10.1007/s00033-023-02123-5.
- [20] V. Moroz and J. Van Schaftingen, Existence of ground states for a class of nonlinear Choquard equations, Trans. Amer. Math. Soc. 367 (2015), 6557–6579, DOI: https://doi.org/10.1090/S0002-9947-2014-06289-2.
- [21] E. H. Lieb and M. Loss, Analysis, 2nd edn, Graduate Studies in Mathematics vol. 14, Amer. Math. Soc., Providence, Rhode Island, 2001.
- [22] H. Berestycki and P.-L. Lions, Nonlinear scalar field equations, I existence of a ground state, Arch. Ration. Mech. Anal. 82 (1983), no. 4, 313–345, DOI: https://doi.org/10.1007/BF00250555.
- [23] L. Jeanjean, Existence of solutions with prescribed norm for semilinear elliptic equations, Nonlinear Anal. 28 (1997), no. 10, 1633–1659, DOI: https://doi.org/10.1016/S0362-546X(96)00021-1.
- [24] M. Willem, Minimax theorems, in: Progress in Nonlinear Differential Equations and Their Applications, vol. 24, Birkhäuser, Boston, 1996.
- [25] F. Brock and A. Yu. Solynin, An approach to symmetrization via polarization, Trans. Amer. Math. Soc. 352 (2000), 1759–1796, DOI: https://doi.org/10.1090/S0002-9947-99-02558-1.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6ff8da00-348a-49b8-8701-3d7d0c01a2b4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.