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Abstract. A graph G is called hypohamiltonian if G is not hamiltonian, but G − x is
hamiltonian for each vertex x of G. We present a list of 331 forbidden configurations which
do not appear in hypohamiltonian graphs.
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1. INTRODUCTION

Throughout this paper, we consider connected graphs without loops or multiple edges.
The used graph terminology is taken from the book [14]. A cycle in a graph G which
contains all vertices of G is called hamiltonian cycle, and a graph containing such a cycle
is called hamiltonian. A vertex of degree k is referred to as a k-vertex. A configuration
in a graph G = (V, E) is a pair (H, f) where H ⊆ G is a connected subgraph of G and
f : V (H) → Z+ is a mapping such that, for each x ∈ V (H), f(x) ≥ degH(x) (less
formal, the configuration is a subgraph with specified degrees of its vertices in the
supergraph).

One of classical topics in research of hamiltonian graphs is the study of nonhamil-
tonian graphs whose all vertex-deleted subgraphs are hamiltonian; these graphs are
called hypohamiltonian graphs. The smallest such graph is the Petersen graph (see
[8]) and, by results from [2–4, 11], and [1], n-vertex hypohamiltonian graphs exist
for all n ≥ 10, n 6∈ {11, 12, 14, 17} (even more, the number of nonisomorphic such
graphs grows exponentially with n, see [10]). A lot of work was also done in study of
planar hypohamiltonian graphs, concerning mainly their constructions and looking for
smallest examples, see [12,7, 17,15,9].
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In this paper, we are interested in forbidden configurations for hypohamiltonian
graphs. It is easy to see that a hypohamiltonian graph cannot contain, as a subgraph,
a 3-cycle with 3-valent vertex. Surprisingly, to our knowledge, no systematic study of
other configurations which cannot appear in hypohamiltonian graphs was done (very
recently in [6], it was shown that a hypohamiltonian graph cannot contain an edge
common to two 3-cycles and incident with a 4-valent vertex). In order to fill this gap, we
present a list of 329 new forbidden configurations for hypohamiltonicity. A part of this
list is used in our recent related paper [5] on local structure of planar hypohamiltonian
graphs from the point of view of existence of unavoidable configurations (which
are still only little explored; along the classical result of Thomassen [13] that each
planar hypohamiltonian graph contains a 3-valent vertex, C. Zamfirescu [16] very
recently showed that it contains at least four such vertices). Note that our list is
not complete as we considered mainly the configurations of small diameter whose
central vertex has small degree (the complete list is very likely infinite). The absence
of these configurations yields that planar hypohamiltonian graphs are, in certain sense,
locally sparse and the upper bound for the number of their edges might be much
lower than the general upper bound 3n − 6 for planar graphs (n being the number
of vertices). In particular, we believe that the multiplicative coefficient 3 could be
decreased; anyway, this cannot be achieved using the presented configuration list as it
contains also configurations where vertices of degrees 5 or more are surrounded with
triangles only.

2. RESULTS

We start with auxiliary lemma whose instances will be used later in the analysis of
long cycle structure in hypohamiltonian graphs:

Lemma 2.1. Let G be a graph, v0 ∈ V (G), and let C be a hamiltonian cycle of G−v0.
If C contains

(a) an edge v1v2, where v0v1, v0v2 ∈ E(G), or

(b) a subpath P = [v1, v2, v3, v4], where v0v1, v0v3, v2v4 ∈ E(G), or

(c) two disjoint subpaths P1 = [v1, v2] and P2 = [v3, v4, v5], where v0v1, v0v4, v2v4,
v3v5 ∈ E(G), or

(d) two disjoint subpaths P1 = [v1, v2, v3] and P2 = [v4, v5], where v0v1, v0v3, v2v4,
v2v5 ∈ E(G), or

(e) two disjoint subpaths P1 = [v1, v2, v3, v4] and P2 = [v5, v6, v7], where
v0v1, v0v3, v2v6, v4v6, v5v7 ∈ E(G), or

(f) two disjoint subpaths P1 = [v1, v2, v3, v4, v5] and P2 = [v6, v7], where
v0v1, v0v3, v2v5, v4v6, v4v7 ∈ E(G), or
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(g) two disjoint subpaths P1 = [v1, v2] and P2 = [v3, v4, v5, v6], where v0v1, v0v4, v2v5,
v3v6 ∈ E(G), or

(h) a subpath P = [v1, v2, v3, v4, v5, v6, v7], where v0v1, v0v4, v2v7, v3v6 ∈ E(G), or

(i) a subpath P = [v1, v2, v3, v4, v5, v6, v7], where v0v1, v0v6, v2v5, v4v7 ∈ E(G), or

(j) two disjoint subpaths P1 = [v1, v2, v3, v4, v5] and P2 = [v6, v7], where
v0v1, v0v5, v2v7, v4v6 ∈ E(G),

then G is hamiltonian.

Proof. Let C be a hamiltonian cycle of G− v0. For each of the cases described above,
we find a hamiltonian cycle of G:

(a) take C − [v1, v2] + [v1, v0, v2] (Figure 1a),

(b) take C − P + [v1, v0, v3, v2, v4] (Figure 1b),

(c) take C − P1 + [v1, v0, v4, v2]− P2 + [v3, v5] (Figure 1c),

(d) take C − P1 + [v1, v0, v3]− P2 + [v4, v2, v5] (Figure 1d),

(e) take C − P1 + [v1, v0, v3, v2, v6, v4]− P2 + [v5, v7] (Figure 1e),

(f) take C − P1 + [v1, v0, v3, v2, v5]− P2 + [v6, v4, v7] (Figure 1f),

(g) take C − P1 + [v1, v0, v4, v5, v2]− P2 + [v3, v6] (Figure 1g),

(h) take C − P + [v1, v0, v4, v5, v6, v3, v2, v7] (Figure 1h),

(i) take C − P + [v1, v0, v6, v5, v2, v3, v4, v7] (Figure 1i),

(j) take C − P1 + [v1, v0, v5]− P2 + [v6, v4, v3, v2, v7] (Figure 1j).
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Fig. 1. Parts of hamiltonian cycle in G− v0 (red) and in G (green)

This implies that the above described routings of a cycle which omits exactly one
vertex in a hypohamiltonian graph G are not possible.
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Theorem 2.2. No hypohamiltonian graph contains any of the forbidden configurations
represented on Figures 2–6.

Proof. Let G be a hypohamiltonian graph.

Configurations F3 and F ′
3

Case 1. Suppose that G contains F3 (i.e. a triangle [v0, v1, v2] with 3-vertex v2). Let
C be a hamiltonian cycle of G − v0. Since v2 is a 2-vertex of G − v0, the edge v1v2
belongs to C. Thus by Lemma 2.1(a), G is hamiltonian, a contradiction.

Case 2. Suppose that G contains F ′
34 (Figure 7). Let C be a hamiltonian cycle of G−v0.

By Lemma 2.1(a), C does not contain the edge v2v3, thus P = [v1, v4, v2, v5] is a sub-
path of C. Hence by Lemma 2.1(b), G is hamiltonian (where C −P + [v1, v0, v2, v4, v5]
is a hamiltonian cycle of G), a contradiction.
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Fig. 7. Particular configurations with central 3-vertex (Cases 2–4)

Case 3. Suppose that G contains F3333, F3334 or F3344 (Figure 7). Let C be a
hamiltonian cycle of G− v0. By Lemma 2.1(a), C does not contain the edges v3v7 (of
F3334 and F3344) and v1v8 (of F3344), thus C = [v1, v2, v3, v4, v5, v6], a contradiction
(note that F3333 itself is not hypohamiltonian).
Case 4. Suppose that G contains F3335 (Figure 7). Let C be a hamiltonian cycle of
G− v0. By Lemma 2.1(a), C does not contain the edges v1v4 and v4v8, thus [v3, v4, v5]
is a subpath of C. If C contains the edge v2v3, then (with respect to 3-vertices v2, v3, v6)
[v1, v2, v3, v4, v5, v6, v7] is a subpath of C, thus G is hamiltonian by Lemma 2.1(h).
Otherwise, C contains the edge v6v3, thus [v1, v2, v7, v6, v3, v4, v5] is a subpath of C.
Hence G is hamiltonian by Lemma 2.1(i), with contradiction in both cases.

In the sequel, we will analyze 83 configurations F ′
3ijk of Figures 3–5. They share

the following common features: each of them contains a cycle [v0, v1, v2, v6, v4, v5] and
a 3-vertex v3, which is a common neighbour of v0, v2, v4, whereas v1, v5, v6 have degrees
i, j, k (3 ≤ i, j, k ≤ 6), respectively, and v1 (v5, v6) is incident with i− 3 (j − 3, k − 3)
triangles (without common edge).
Case 5. Suppose that G contains a configuration F ′

3ijk; assume that the indexing of
vertices of F ′

3ijk (Figure 8) is chosen in the way that v0 is the special vertex (marked
by x-cross in Figures 3–5). Let C be a hamiltonian cycle of G− v0. Clearly, [v2, v3, v4]
is a subpath of C, since v3 is a 2-vertex of G− v0.
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Fig. 8. Possible neighbourhoods of v5 in configurations F ′
3ijk (Case 5)

Claim 5a. C does not contain the edges v2v6 and v4v6.

Proof of Claim 5a. Suppose that C contains v4v6 (the case when C contains v2v6 is
treated in similar way). Note that in this case C does not contain v4v5.

i. If v5 is a 3-vertex (Figure 8a), then C contains at most one edge incident with v5,
a contradiction.

ii. If v5 is a 4-vertex, then by Lemma 2.1(a), C does not contain the edge v5v7
(Figure 8b), or by Lemma 2.1(c), C does not contain the path [v9, v5, v10] (Figure 8c),
or else by Lemma 2.1(g), C does not contain the edge v5v11 (Figure 8d). We obtain
that C contains at most one edge incident with v5, a contradiction.

iii. If v5 is a 5-vertex, then by Lemma 2.1(a) and (c), C contains neither the edge
v5v7 nor the path [v9, v5, v10] (Figure 8e), or by Lemma 2.1(a) and (g), C does
not contain the edges v5v7 and v5v11 (Figure 8f), or else by Lemma 2.1(c) and
(g), C contains neither the path [v9, v5, v10] nor the edge v5v11 (Figure 8g); thus C
contains at most one edge incident with v5, a contradiction.

iv. If v5 is a 6-vertex, then by Lemma 2.1(a), (c), and (g), C contains neither the edge
v5v7 nor the path [v9, v5, v10] nor the edge v5v11 (Figure 8h). Thus C contains at
most one edge incident with v5, a contradiction as well. �

If v6 is a 3-vertex, then by Claim 5a, C contains at most one edge incident with v6,
a contradiction. In the rest of the Case 5, let v6 have degree at least 4.
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Claim 5b. If the edge v1v2 (v4v5) does not belong to any triangle of F ′
3ijk, then C

contains v1v2 (v4v5).
Proof of Claim 5b. Assume that v1v2 does not belong to any triangle (similarly for v4v5).

i. If v1 is a 3-vertex, then C contains the edge v1v2 (Figure 9a).
ii. If v1 is a 4-vertex, then by Lemma 2.1(a), C does not contain the edge v1v12

(Figure 9b), or by Lemma 2.1(c), C does not contain the path [v14, v1, v15]
(Figure 9c). Thus C contains the edge v1v2.

iii. If v1 is a 5-vertex, then by Lemma 2.1(a), C does not contain the edge v1v12 and
by Lemma 2.1(c), C does not contain the path [v14, v1, v15] (Figure 9d). Thus C
contains the edge v1v2 as well. �

It is easy to check (on Figures 3–5) that (in the case when deg(v6) ≥ 4) at least
one of the edges v1v2 and v4v5 is incident with no triangle of F ′

3ijk. Suppose v1v2 has
this property. Then by Claim 5b, [v1, v2, v3, v4] is a subpath of C.

Claim 5c. C does not contain the edge v4v5 and the edge v4v6 belongs to a triangle
of F ′

3ijk.
Proof of Claim 5c. Recall that v6 has degree at least 4.

i. If v6 is a 4-vertex and the edge v4v6 does not belong to a triangle, then by Lemma
2.1(d), C does not contain the edge v6v20 (Figure 10a), or by Lemma 2.1(e), C
does not contain the path [v18, v6, v19] (Figure 10b). Thus C contains at most one
edge incident with v6, a contradiction.

ii. If v6 is a 4-vertex and the edge v4v6 belongs to a triangle (Figure 10c), then C
contains the edge v6v16; thus by Lemma 2.1(d), C does not contain the edge v4v5.

iii. If v6 is a 5-vertex and the edge v4v6 does not belong to a triangle (Figure 10d),
then by Lemma 2.1(d), C does not contain the edge v6v20 and by Lemma 2.1(e), C
does not contain the path [v18, v6, v19]. Thus C contains at most one edge incident
with v6, a contradiction.

iv. If v6 is a 5-vertex and the edge v4v6 belongs to a triangle, then by Lemma 2.1(d),
C does not contain the edge v6v20 (Figure 10e), or by Lemma 2.1(e), C does not
contain the path [v18, v6, v19] (Figure 10f). Hence C contains the edge v6v16 and
therefore by Lemma 2.1(d), C does not contain the edge v4v5.



368 Igor Fabrici, Tomáš Madaras, and Mária Timková

v. If v6 is a 6-vertex, then by Lemma 2.1(d), C does not contain the edges v6v20 and
by Lemma 2.1(e), C does not contain the path [v18, v6, v19] (Figure 10g). Hence C
contains the edge v6v16 and therefore by Lemma 2.1(d), C does not contain the
edge v4v5. �

v18v17v19 v18v19

v0 v0 v0

v0 v0 v0 v0

v1 v1 v1

v1v1v1

v2 v2 v2

v2 v2 v2 v2

v1

v19v20
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v19

v17

v20 v20

v5 v5 v5

v5v5v5

v4 v4 v4

v4 v4 v4 v4

v16v16v16

v17

v18

v16

v18

v5

v3v3 v3 v3

v3 v3 v3

v6 v6 v6

v6 v6 v6 v6

(d)

(a)

(e)

(b)

(f)

(c)

(g)

Fig. 10. Possible neighbourhoods of v6 in configurations F ′
3ijk (Case 5)

Now, C contains the path [v1, v2, v3, v4], C does not contain the edge v4v5, and
the edge v4v6 belongs to a triangle. It is easy to check (on Figures 3–5) that (for v4v6
belonging to a triangle and v1v2 not belonging to any triangle) the edge v4v5 does not
belong to any triangle, thus by Claim 5b, C contains the edge v4v5, a contradiction.

Configurations F4 and F ′
4

Case 6. Suppose that G contains F4 (Figure 11). Let C be a hamiltonian cycle of
G− v0. By Lemma 2.1(a), C does not contain edges v1v2 and v2v3, thus C contains
at most one edge incident with v2, a contradiction.

Case 7. Suppose that G contains F ′
44a, F ′

44b, or F ′
45 (Figure 11). Let C be a hamilto-

nian cycle of G− v0. By Lemma 2.1(a), C contains neither the edge v1v3 nor the edge
v5v6 (of F ′

44a and F ′
45) and by Lemma 2.1(c), C does not contain the path [v7, v5, v8]

(of F ′
44b and F ′

45). Thus [v2, v3, v4, v5] is a subpath of C, hence by Lemma 2.1(b), G is
hamiltonian, a contradiction.
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v4
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v0 v0v0
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v6 v6
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v9 v8

v8

F
4

F
0

4
4a F

0

4
4b F

0

4
5

v3 v3v3

v5 v5v5

Fig. 11. Particular configurations with central 4-vertex (Cases 6 and 7)

In the sequel, we will analyze 40 configurations F ′
4ijk of Figures 5–6. They share

the following common features: each of them contains a cycle [v0, v1, v2, v3, v7, v5, v6]
and a 4-vertex v4, which is a common neighbour of v0, v1, v3, v5, whereas v2, v6, v7
have degrees i, j, k (3 ≤ i, j, k ≤ 6), respectively, and v2 (v6, v7) is incident with i− 3
(j − 3, k − 3) triangles (without common edge).

Case 8. Suppose that G contains a configuration F ′
4ijk (except of F ′

4335c, F ′
4336,

F ′
4344c, F ′

4344j, F ′
4345e, F ′

4444c, F ′
4444f , and F ′

4445c); assume that the indexing of
vertices of F ′

4ijk (Figure 12) is chosen in the way that v0 is the special vertex (marked
by x-cross in Figures 5–6). Note that in each of 32 considered configurations F ′

4ijk,
the edges v1v2, v3v7, and v5v6 do not belong to any triangle of F ′

4ijk. Let C be a
hamiltonian cycle of G − v0. By Lemma 2.1(a), C does not contain the edge v1v4.
Thus [v3, v4, v5] is a subpath of C (Figure 12).

v0

v0

v0

v0v9

v8

v8

v1

v1

v1

v1

v7

v7

v7

v7
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v11

v10

v5

v5

v5

v5

v3

v3

v3

v3

v2

v2

v2

v2

v11

v9

v6

v6

v6

v6

v4

v4

v4

v4

(a)

(c)

(b)

(d)

Fig. 12. Possible neighbourhoods of v6 in configurations F ′
4ijk (Case 8)
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Claim 8a. C contains the edge v5v6.
Proof of Claim 8a.
i. If v6 is a 3-vertex, then it is a 2-vertex of G− v0 (Figure 12a), thus C contains the

edge v5v6.
ii. If v6 is a 4-vertex, then by Lemma 2.1(a), C does not contain the edge v6v8 (Fig-

ure 12b), or by Lemma 2.1(c), C does not contain the path [v9, v6, v10] (Figure 12c).
Thus C contains the edge v5v6.

iii. If v6 is a 5-vertex, then by Lemma 2.1(a), C does not contain the edge v6v8 and
by Lemma 2.1(c), C does not contain the path [v9, v6, v10] (Figure 12d). Thus C
contains the edge v5v6 as well. �

v0v0v0v0 v1v1v1v1

v5

v13v15

v13

v5v5

v12

v5

v6

v12

v6v6v6

v3

v14 v14

v3v3v3

v2v2v2

v15

v2

v7v7v7v7

v4v4v4v4

(a) (b) (c) (d)

Fig. 13. Possible neighbourhoods of v7 in configurations F ′
4ijk (Case 8)

Now, P1 = [v3, v4, v5, v6] is a subpath of C.

Claim 8b. C contains the edge v3v7.
Proof of Claim 8b.
i. If v7 is a 3-vertex, then C does not contain the edge v7v5 (Figure 13a). Thus C

contains the edge v3v7.
ii. If v7 is a 4-vertex, then by Lemma 2.1(d), C does not contain the edge v7v12

(Figure 13b), or by Lemma 2.1(e), C does not contain the path [v13, v7, v14]
(Figure 13c). Thus C contains the edge v3v7.

iii. If v7 is a 5-vertex, then by Lemma 2.1(d), C does not contain the edge v7v12 and
by Lemma 2.1(e), C does not contain the path [v13, v7, v14] (Figure 13d). Thus C
contains the edge v3v7 as well. �

v0 v0

v16

v16v1 v1

v17
v5 v5

v7 v7

v6 v6

v3
v3

v2 v2v4 v4

(a) (b)

Fig. 14. Possible neighbourhoods of v2 in configurations F ′
4ijk (Case 8)

Now, P2 = [v7, v3, v4, v5, v6] is a subpath of C.
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Claim 8c. C contains the edge v1v2.
Proof of Claim 8c.
i. If v2 is a 3-vertex, then it is a 2-vertex of G− P2 (Figure 14a), thus the edge v1v2

belongs to C.
ii. If v2 is a 4-vertex (Figure 14b), then by Lemma 2.1(f) C does not contain the edge

v2v17, thus the edge v1v2 belongs to C. �
Now, C contains the path P2 = [v7, v3, v4, v5, v6] and the edge v1v2, thus

by Lemma 2.1(g), G is hamiltonian, a contradiction.

Case 9. Suppose that G contains F ′
4335c or F ′

4336 (Figure 15). Let C be a hamiltonian
cycle of G− v0. By Lemma 2.1(a), C does not contain the edges v1v4 and v6v8. Thus
[v3, v4, v5] is a subpath of C. Since v7 is a 3-vertex, C contains either v3v7 or v5v7.
If C contains v3v7, then C does not contain v2v3, thus the edge v1v2 belongs to C,
and by Lemma 2.1(g), G is hamiltonian, a contradiction. If C contains v5v7, then
by Lemma 2.1(c), C does not contain the path P = [v9, v6, v10] (for F ′

4336), thus C
contains the edge v6v11, and by Lemma 2.1(g), G is hamiltonian, a contradiction as well.

v0 v0v1 v1

v5 v5
v11

v11

v10

v9
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v8

v8

v3 v3

v12 v12

v13 v13v4v2 v2

v7 v7

v4v6 v6

F
0

4
335c F

0

4
336

Fig. 15. Particular configurations F ′
4ijk (Case 9)

Case 10. Suppose that G contains one of F ′
4344c, F ′

4344j, F ′
4345e, F ′

4444c, F ′
4444f ,

and F ′
4445c (Figure 16). Let C be a hamiltonian cycle of G− v0. By Lemma 2.1(a), C

does not contain the edge v1v9. Thus [v2, v1, v8] is a subpath of C. By Lemma 2.1(b),
C does not contain the path [v2, v4, v3], thus C contains the edge v4v5.

Claim 10a. C contains the edge v5v6.
Proof of Claim 10a.
i. If v6 is a 3-vertex, then it is a 2-vertex of G − v0 (F ′

4344c), thus C contains the
edge v5v6.

ii. If v6 is a 4-vertex, then by Lemma 2.1(a), C does not contain the edge v6v10
(F ′

4344j, F ′
4444f), or by Lemma 2.1(c), C does not contain the path [v11, v6, v12]

(F ′
4444c). Thus C contains the edge v5v6.

iii. If v1 is a 5-vertex, then by Lemma 2.1(a), C does not contain the edge v6v10 and
by Lemma 2.1(c), C does not contain the path [v11, v6, v12] (F ′

4345e, F ′
4445c). Thus

C contains the edge v5v6 as well. �
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Fig. 16. Particular configurations F ′
4ijk (Case 10)

Now, P1 = [v2, v1, v8] and P2 = [v4, v5, v6] are subpaths of C.

Claim 10b. C contains the edge v3v7.
Proof of Claim 10b.

i. If v7 is a 3-vertex, then it is a 2-vertex of G− P2, thus the edge v3v7 belongs to C
(concerning the configurations F ′

4344j, F ′
4345e).

ii. If v7 is a 4-vertex, then by Lemma 2.1(d), C does not contain the edge v7v14
(concerning the configurations F ′

4344c, F ′
4444c, F ′

4444f , F ′
4445c). Thus C contains

the edge v3v7. �

Now, if C contains the edge v3v4, then by Lemma 2.1(g), G is hamiltonian.
Otherwise C contains the edge v2v4 and by Lemma 2.1(j), G is hamiltonian as well,
a contradiction in both cases.

v6 v0

v4 v2

v8 v1

v3

v5

v7

Fig. 17. Configuration F43333 (Case 11)
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Case 11. Suppose that G contains F43333 (Figure 17). Let C be a hamiltonian cycle
of G−v0. Then the cycle [v1, v2, v3, v4, v5, v6, v7, v8] is a subgraph of C, a contradiction
(as the smallest hypohamiltonian graph has 10 vertices).

Configurations F6

In the sequel, we will analyze 42 configurations F6ijk, each of them results from
corresponding F ′

3`mn (with ` = i−1, m = j−1, n = k−1) by adding all three dashed
edges (Figures 3–5). They share the following common features: each of them contains
6-wheel with the central 6-vertex v3 and a rim cycle [v0, v1, v2, v6, v4, v5], whereas
v1, v5, v6 have degrees i, j, k (5 ≤ i, j, k ≤ 7), respectively, and v1 (v5, v6) is incident
with i− 2 (j − 2, k − 2) triangles.

Case 12. Suppose that G contains a configuration F6ijk; assume that the indexing of
vertices of F6ijk (Figure 18) is chosen in the way that v0 is the special vertex (marked
by x-cross in Figures 3–5). Let C be a hamiltonian cycle of G− v0. Then by Lemma
2.1(a), C does not contain the edges v1v3 and v3v5 (that is, two of three edges in
which F6ijk differs from F ′

3`mn). If C does not contain the edge v3v6 (the third edge
of F6ijk not occurring in F ′

3`mn), then the proof is the same as for F ′
3`mn.

Suppose that C contains v3v6. Assume first that v5 is a 5-vertex and v0v5 belongs to
two triangles of F6ijk (Figure 18a; the case when v1 is a 5-vertex and v0v1 belongs
to two triangles of F6ijk is symmetric). Then, by Lemma 2.1(a), C does not contain
the edge v5v7, thus C contains the edge v4v5. Moreover, if C contains the edge v3v4,
then by Lemma 2.1(b), G is hamiltonian, otherwise C contains the edge v2v3 and by
Lemma 2.1(c), G is hamiltonian as well, a contradiction in both cases.

In the remaining configurations F6ijk — that is, when v5 is not a 5-vertex or v0v5
belongs to exactly one triangle of F6ijk (and, symmetrically, v1 is not a 5-vertex or
v0v1 belongs to exactly one triangle of F6ijk) — it is easy to check (on Figures 3–5)
that both edges v1v2 and v4v5 belong to exactly one triangle of F6ijk (i.e. to [v1, v2, v3]
or [v3, v4, v5], respectively).

v6v6 v6

v0 v0 v0

v1v1v1

v2 v2 v2v4

v8

v7

v4

v10

v9

v4

v10

v9

v7

v3v3 v3

v5v5 v5

(c)(a) (b)

Fig. 18. Possible neighbourhoods of v5 in configurations F6ijk (Case 12)
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Claim 12a. C does not contain the edges v2v3 and v3v4.
Proof of Claim 5a. Suppose that C contains v3v4 (if C contains v2v3, we argue
similarly).

i. If v5 is a 5-vertex, then by Lemma 2.1(c), C does not contain the path [v9, v5, v10]
(Figure 18b), thus C contains the edge v4v5 and consequently by Lemma 2.1(b), G
is hamiltonian, a contradiction.

ii. If v5 is a 6-vertex, then by Lemma 2.1(a) and (c), C contains neither the edge
v5v7 nor the path [v9, v5, v10] (Figure 18c), thus C contains the edge v4v5 and
consequently by Lemma 2.1(b), G is hamiltonian, a contradiction as well. �

Finally, C contains at most one edge incident with v3, a contradiction.

Configurations F5

Case 13. Suppose that G contains F55a, F55b, or F56 (Figure 19). Let C be a hamil-
tonian cycle of G− v0. By Lemma 2.1(a), C contains neither the edge v1v3 nor the
edge v3v5 nor else the edge v5v6 (of F55a and F56) and by Lemma 2.1(c), C does not
contain the path [v7, v5, v8] (of F55b and F56). Thus [v2, v3, v4, v5] is a subpath of C,
hence by Lemma 2.1(b), G is hamiltonian, a contradiction.

v8 v2

v6 v4

v0 v0
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v6 v6

v7
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v1 v1v1
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v4 v4v4

v9 v8
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F
5
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5
5b F

5
6 F

5
33333

v3 v3v3

v5 v5v5

Fig. 19. Particular configurations with central 5-vertex (Cases 13 and 14)

Case 14. Suppose that G contains F533333 (Figure 19). Let C be a hamiltonian
cycle of G− v0. Then the cycle [v1, v2, v3, v4, v5, v6, v7, v8, v9, v10] is a subgraph of C,
a contradiction (there is no hypohamiltonian graph on 11 vertices).

In the sequel, we will analyze 147 configurations F5ijk, each of them results from
corresponding F ′

3`mn (with ` = i−1, m = j−1, n = k, or ` = i−1, m = j, n = k−1 or
else ` = i, m = j−1, n = k−1) by adding two dashed edges (Figures 3–5). They share
the following common features: each of them contains a cycle R = [v0, v1, v2, v6, v4, v5]
and a 5-vertex v3, which is a common neighbour of five of the six vertices of R, whereas
v1, v5, v6 have degrees i, j, k (3 ≤ i, j, k ≤ 7), respectively, and v1 (v5, v6) is incident
with i− 2 (j − 2, k − 2) triangles or with i− 3 (j − 3, k − 3) triangles, if v1 (v5, v6) is
not adjacent to v3, respectively.
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Case 15. Suppose that G contains a configuration F5ijk; assume that the indexing of
vertices of F5ijk is chosen in the way that v0 is the special vertex (marked by x-cross
in Figures 3–5). Let C be a hamiltonian cycle of G− v0. In every configuration F5ijk,
either F5ijk is a subgraph of corresponding F6pqr (with p + q + r = i + j + k + 1,
i ≤ p ≤ i + 1, j ≤ q ≤ j + 1, k ≤ r ≤ k + 1) and the proof follows from the proof for
F6pqr, or F5ijk results from corresponding F ′

3`mn by adding two edges v1v3 and v3v5
between neighbours of v0. Then by Lemma 2.1(a), C does not contain the edges v1v3
and v3v5 and the proof is the same as for F ′

3`mn.

Configurations F7

Case 16. Suppose that G contains F755 (Figure 20). Let C be a hamiltonian cycle of
G− v0. By Lemma 2.1(a), C does not contain the edges v1v9, v1v2, v2v3, and v3v10.
Thus [v7, v1, v8] and [v4, v3, v12] are subpaths of C. Subsequently, by Lemma 2.1(b), C
does not contain the edges v2v7 and v2v4 and by Lemma 2.1(c), C does not contain the
path [v5, v2, v6]. Hence C contains at most one edge incident with v2, a contradiction.

v0 v0 v0v0
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v5v6 v6
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v7 v7 v7v7

v1 v1 v1v1v3 v3 v3v3

v5 v5v5v6

F
7
55 F

7
555 F

7
5555 F

7
556

Fig. 20. Configurations with central 7-vertex (Cases 16 and 17)

Case 17. Suppose that G contains F7555, F75555, or F7556 (Figure 20). Let C be
a hamiltonian cycle of G− v0. By Lemma 2.1(a), C does not contain the edges v1v9,
v1v2, v2v3, and v3v10. Thus C contains the edge v1v7. Subsequently, by Lemma 2.1(b),
C does not contain the path [v6, v2, v7] and by Lemma 2.1(c), C contains neither the
path [v6, v2, v5] nor the path [v5, v2, v4].

Claim 17a. C contains the path [v6, v2, v4].
Proof of Claim 17a.
i. For F7555 or F7556, C contains the path [v8, v1, v7], thus, by Lemma 2.1(b), C does

not contain the edge v2v7. Hence, C contains the path [v6, v2, v4].
ii. For F75555, C contains the edge v1v7 as well as the edge v3v4. Moreover, C does not

contain the path [v7, v2, v4], because otherwise C does not contain the edges v6v7,
v6v2, v5v2, and v5v4, and by Lemma 2.1(d), C does not contain also the edges v6v14
and v5v13; but then C contains the edge v5v6 and, finally, C − [v1, v7, v2, v4, v3] +
[v1, v0, v3]− [v6, v5] + [v6, v7, v2, v4, v5] is a hamiltonian cycle of G, a contradiction.
Therefore, C contains the path [v6, v2, v4] (or the symmetrical path [v5, v2, v7]). �
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Claim 17b. C contains the edge v3v4.
Proof of Claim 17b.
i. It is obvious for the configurations F7555 and F75555 (there are only two remaining

edges incident with v3).
ii. For F7556, by Lemma 2.1(c), C does not contain the path [v11, v3, v12], thus C

contains the edge v3v4. �
Now, C contains the path [v6, v2, v4, v3].

Claim 17c. C contains the edge v5v6.
Proof of Claim 17c.
By Lemma 2.1(d), C does not contain the edge v5v13, thus C contains the edge v5v6. �

Finally, C contains the path [v5, v6, v2, v4, v3] and the edge v1v7, hence by Lemma
2.1(g), G is hamiltonian, a contradiction.
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