PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Predicting Tachypleus gigas Spawning Distribution with Climate Change in Northeast Coast of India

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Species distribution models are used to predict ideal grounds, species range, and spatial shifts in an ecology over a span of time. With an aim to use Maximum entropy model (MaxEnt), presence records and pseudo-absence points are used to predict the Tachypleus gigas spawning activity for 2030 and 2050 in northeast India. The bearings of sixty T. gigas spawning grounds identified in 2018 were inserted into ArcGIS v.10.1. Meanwhile, 19 environment variables were inserted into MaxEnt v. 3.3.3, before the model performance was tested using receiver operational characteristics and area under curve (AUC). With an AUC of 0.978,85% was achieved for isothermality (bio3) and 74% for temperature (x̄= average) of the wettest quarter (bio8), all of which were inserted into ArcGIS to produce spatial maps. Although we learnt that T. gigas are still spawning in Odisha in 2030 and 2050, their distribution range is predicted to shrink due to the coastal morphology change. The climate conditions in Odisha revolve with the monsoon, summer and winter seasons from which, temperature variations do not only influence the annual absence/presence of spawning adults but also, the survival of juveniles in natal beaches. The use of MaxEnt offers novelty to predict population sustainability of arthropods characterized by oviparous spawning (horseshoe crabs, turtles, terrapins and crocodiles) through which, the government of India can take advantage of the present data to initiate the coastal rehabilitation measures to preserve their spawning grounds.
Słowa kluczowe
Rocznik
Strony
211--219
Opis fizyczny
Bibliogr. 35 poz., rys., tab.
Twórcy
  • Horseshoe Crab Research Unit, Department of Bioscience & Biotechnology, Fakir Mohan University, Balasore-756089, Odisha, India
  • Association of Biodiversity Conservation and Research, Devine Colony, 756001 Balasore, Odisha, India
  • Centre of Excellence, Khallikote University, Berhampur, 761008 Ganjam, Odisha, India
  • Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
  • Department of Remote Sensing and GIS, North Orissa University, Takatpur, 757003, Odisha, India
  • Malda Polytechnic, West Bengal State Council of Technical Education, 73210, West Bengal, India
  • Department of Food Technology and Biochemical Engineering, Faculty of Engineering and Technology, Jadavpur University, Jadavpur, Kolkata 700032, West Bengal, India
  • Association of Biodiversity Conservation and Research, Devine Colony, 756001 Balasore, Odisha, India
  • Department of Remote Sensing and GIS, North Orissa University, Takatpur, 757003, Odisha, India
  • Faculty of Fisheries and Food Science, University Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
  • Association of Biodiversity Conservation and Research, Devine Colony, 756001 Balasore, Odisha, India
  • School of Biotechnology, GIET University, Gunupur 765022, Odisha, India
  • University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
  • INOCEM Research Station, Kulliyyah of Science, International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia
  • Association of Biodiversity Conservation and Research, Devine Colony, 756001 Balasore, Odisha, India
  • Institute of Tropical Biodiversity and Sustainable Development, University Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
  • Horseshoe Crab Research Unit, Department of Bioscience & Biotechnology, Fakir Mohan University, Balasore-756089, Odisha, India
  • Forensic Science Programme, School of Health Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia
Bibliografia
  • 1. Alam H., Sumedha C., Pati S., Dash B.P., Chatterji A. 2015. Horseshoe crab peri-vitelline fluid triggers the human bone marrow stem cell differentiation into cardiomyocyte in vitro. Cell and Developmental Biology, 4(3), 1000162.
  • 2. Basudev T., Sivakumar K., Sajan J., Satyaranjan B., Choudhury B.C. 2013. Assessment of the population status and threats to the horseshoe crabs along the northern east coast of India. In Ecology and conservation of tropical marine faunal communities (pp. 137-146). Springer, Berlin, Heidelberg.
  • 3. Braunisch V., Bollmann K., Graf R.F., Hirzel A.H. 2008. Living on the edge—modelling habitat suitability for species at the edge of their fundamental niche. Ecological modelling, 214(2-4), 153-167.
  • 4. Biswal G.C., Andia B.N., Pati S., Dash B. P. (2016). Conservation of Indian Horseshoe Crab, Tachypleus gigas through Captive Rearing. Frontiers in Life Sciences, Excel India Publisher, New Delhi, 178-181.
  • 5. Chinnari S., Pati, S., Dash B.P., Chatterji, A. 2015. A new record on inducement of differentiation of dendritic cells by the peri-vitelline fluid of the fertilized eggs of indian horseshoe crab (Tachypleus gigas. Müller). Bio. Forum Int. J. 7, 678–681.
  • 6. Fairuz-Fozi N., Satyanarayana B., Zauki N.A.M., Muslim A.M., Husain M.L., Ibrahim S., Nelson B.R. 2018. Carcinoscorpius rotundicauda (Latreille, 1802) population status and spawning behaviour at Pendas coast, Peninsular Malaysia. global Ecology and Conservation, 15, e00422.
  • 7. Fielding A.H., Bell J.F. 1997. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation, 24, 38-49.
  • 8. Haddad N.M., Brudvig L.A., Clobert J., Davies K.F., Gonzalez A., Holt R.D., Cook W.M. 2015. Habitat fragmentation and its lasting impact on Earth’s eco-systems. Science advances, 1(2), e1500052.
  • 9. Hamilton S.H., Pollino C.A., Jakeman A.J. 2015. Habitat suitability modelling of rare species using Bayesian networks: model evaluation under limited data. Ecological Modelling, 299, 64-78.
  • 10. Hoffmann M., Hilton-Taylor C., Angulo A., Böhm M., Brooks T.M., Butchart S.H.,Darwall W.R. 2010. The impact of conservation on the status of the world’s vertebrates. science, 330 (6010), 1503-1509.
  • 11. John B.A., Kamaruzzaman B.Y., Jalal K.C.A., Hassan S., Rozihan M. 2017. Effect of differential feed on the molting success and survival of horseshoe crab trilobite (Tachypleus gigas). Malaysian Applied Biology Journal, 46 (1), 21-25.
  • 12. John B.A., Nelson B.R., Sheikh H.I., Cheung S.G., Wardiatno Y., Dash B.P., Pati S. 2018. A review on fisheries and conservation status of Asian horseshoe crabs. Biodiversity and Conservation, 27(14), 3573-3598.
  • 13. Keith D.A., Elith J., Simpson C.C. 2014. Predicting distribution changes of a mire ecosystem under future climates. Diversity and Distributions, 20(4), 440-454.
  • 14. Zauki N.A.M., Satyanarayana B., Fairuz-Fozi N., Nelson B.R., Martin M.B., Akbar-John B., Chowdhury A.J.K. 2019. Citizen science frontiers horseshoe crab population regain at their spawning beach in East Peninsular Malaysia. Journal of Environmental Management, 232, 1012-1020.
  • 15. Mishra B. 2013. An exploratory study of the protected area management policies in odisha. Indian Forester, 139(6), 507-517.
  • 16. Nelson B.R., Satyanarayana B., Zhong J.M.H., Shaharom F., Sukumaran M., Chatterji A. 2015. Episodic human activities and seasonal impacts on the Tachypleus gigas (Müller, 1785) population at Tanjung Selangor in Peninsular Malaysia. Estuarine, Coastal and Shelf Science, 164, 313-323.
  • 17. Nelson B.R., Satyanarayana B., Moh J.H.Z., Shaharom F. 2016a. Does human infringement at the spawning grounds challenge horseshoe crab eggs and their embryogenesis. Journal of Sustainability Science and Management Special, 1, 1-10.
  • 18. Nelson B.R., Satyanarayana B., Moh J.H.Z., Ikhwanuddin M., Chatterji A., Shaharom F. 2016b. The final spawning ground of Tachypleus gigas (Müller, 1785) on the east Peninsular Malaysia is at risk: a call for action. PeerJ, 4, e2232.
  • 19. Nelson B.R., Zhong J.M.H., Zauki N.A.M., Satyanarayana B., Chowdhury A.J.K. 2019. Effects of shore sedimentation to Tachypleus gigas (Müller, 1785) spawning activity from Malaysian waters. Journal of Sustainability Science and Management, 14(1), 41-60.
  • 20. Ngasotter S., Panda S.P., Mohanty U., Akter S., Mukherjee S., Waikhom D., Devi L.S. 2020. Current Scenario of Fisheries and Aquaculture in India with Special Reference to Odisha: A Review on its Status, Issues and Prospects for Sustainable Development. International Journal of Bio-Resource & Stress Management, 11(4).
  • 21. Pati S., Shahimi S., Atan Edinur H., Acharya D., Dash B.P., Nelson B.R. 2020a. Extraction of people’s perception towards horseshoe crab existence in northeast India. Frontiers in Marine Science, 7, 924.
  • 22. Pati S., Chatterji A., Dash B.P., Raveen Nelson B., Sarkar T., Shahimi S., Acharya D. 2020b. Structural Characterization and Antioxidant Potential of Chitosan by γ-Irradiation from the Carapace of Horseshoe Crab. Polymers, 12(10), 2361.
  • 23. Pati S., Jena P., Shahimi S., Nelson B.R., Acharya D., Dash B.P., Chatterji A. 2020c. Characterization dataset for pre-and post-irradiated shrimp waste chitosan. Data in brief, 32, 106081.
  • 24. Pati S., Biswal G.C., Dash B.P. 2015. Availability of Tachypleus gigas (Müller) along the river estuaries of Balasore district, Odisha, India. International journal of fisheries and aquatic studies, 2, 334-336.
  • 25. Patia S., Chatterjib A., Dasha B.P. 2018. Chitosan from the carapace of Indian horseshoe crab (Tachypleus gigas, müller): Isolation and its characterization.
  • 26. Pati S., Dash B.P. 2016. Horseshoe crab (Tachypleus gigas) as prey of domestic pig (Sus domesticus) in Khandia estuary, Balasore, Odisha, India. ZOO’S PRINT, 31(5), 14-15.
  • 27. Pati S., Tudu S., Rajesh A., Biswal G.C., Chatterji A., Dash B.P., Samantaray R. 2017. Man-made activities affecting the breeding ground of horseshoe crab, Tachypleus gigas (Müller, 1795) along Balasore coast: Call for immediate conservation. E-planet, 15(2), 145-154.
  • 28. Phillips S. J., Anderson R. P., Schapire R. E. 2006. Maximum Entropy Modeling of Species 284 Geographic Distributions. Ecoogical Modelling 190, 231-259.
  • 29. Phillips S.J., Dudík M., Elith J., Graham C.H., Lehmann A., Leathwick J., Ferrier S. 2009. Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecological Applications, 19(1), 181-197.
  • 30. Raghavan R.K., Heath A.C.G., Lawrence K.E., Ganta R.R., Peterson A.T., Pomroy W. E. 2020. Predicting the potential distribution of Amblyomma americanum (Acari: Ixodidae) infestation in New Zealand, using maximum entropy-based ecological niche modelling. Experimental and Applied Acarology, 80(2), 227-245.
  • 31. Remya K., Ramachandran A., Jayakumar S. 2015. Predicting the current and future suitable habitat distribution of Myristica dactyloides Gaertn. using MaxEnt model in the Eastern Ghats, India. Ecological Engineering, 82, 184-188.
  • 32. Segan D.B., Murray K.A., Watson J.E. 2016. A global assessment of current and future biodiversity vulnerability to habitat loss–climate change interactions. Global Ecology and Conservation, 5, 12-21.
  • 33. Vargas-Piedra G., Valdez-Cepeda R.D., López-Santos A., Flores-Hernández A., Hernández-Quiroz N.S., Martínez-Salvador M. 2020. Current and Future Potential Distribution of the Xerophytic Shrub Candelilla (Euphorbia antisyphilitica) under Two Climate Change Scenarios. Forests, 11(5), 530.
  • 34. Zauki N.A.M., Satyanarayana B., Fairuz-Fozi N., Nelson B.R., Martin M.B., Akbar-John B., Chowdhury A.J.K. 2019. Horseshoe crab bio-ecological data from balok, east coast peninsular Malaysia. Data in brief, 22, 458-463.
  • 35. Zhang L., Jing Z., Li Z., Liu Y., Fang S. 2019. Predictive modeling of suitable habitats for Cinnamomum Camphora (L.) presl using maxent model under climate change in China. International Journal of Environmental Research and Public Health, 16(17), 3185.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6ff566e6-bd5e-4ca7-881f-a89857be41b9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.