Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Purpose: This paper presents a comprehensive review of nanocellulose and its application in several applications, including composites, biomedical, and food packaging fields. Design/methodology/approach: General explanations about cellulose and nanocellulose have been described. Different types of nanocellulose (cellulose nanofibers, cellulose nanocrystals, bacterial nanocellulose) as well as their isolation processes (mechanical process, chemical process) have been reviewed. Several surface modifications have been explained to improve the dispersion of nanocellulose in non-polar polymers. The possible utilization of nanocellulose in composites, biomedical, and food packaging fields have also been analysed. Findings: This review presents three application fields at once, namely composites, biomedical, and food packaging fields. In the composite field, nanocellulose can be used as a reinforcing agent which increases the mehcnical properties such as tensile strength and toughness, and thermal stability of the final composites. In the biomedical field, nanocellulose is reinforced into hydrogel or composites which will be produced as tissue scaffolding, wound dressing, etc. It is found that the addition of nanocellulose can extend and control the drug release. While in the packaging field, nanocellulose is added into a biopolymer to improve the barrier properties and decrease the water and oxygen vapor transmission rates. Research limitations/implications: Nanocellulose has a hydrophilic nature, thus making it agglomerated and difficult to disperse in most non-polar polymers. Therefore, certain surface modification of nanocellulose are required prior to the preparation of composites or hydrogels. Practical implications: Further research regarding the toxicity of nanocellulose needs to be investigated, especially when applying it in the biomedical and food packaging fields. Originality/value: This review presents three application fields at once, namely composites, biomedical, and food packaging fields.
Wydawca
Rocznik
Tom
Strony
49--64
Opis fizyczny
Bibliogr. 97 poz.
Twórcy
autor
- Department of Agroindustrial Technology, Faculty of Agricultural Engineering and Technology, Bogor Agricultural University, Gedung Fateta, Kampus IPB Dramaga, Bogor 16680, Indonesia
autor
- Department of Agroindustrial Technology, Faculty of Agricultural Engineering and Technology, Bogor Agricultural University, Gedung Fateta, Kampus IPB Dramaga, Bogor 16680, Indonesia
autor
- Department of Agroindustrial Technology, Institut Teknologi Sumatera, Jalan Terusan Ryacudu, Way Hui Jati Agung, Lampung Selatan 35365, Indonesia
autor
- Department of Agroindustrial Technology, Udayana University, Bali-80361, Indonesia
autor
- Faculty of Agriculture, Muhammadiyah University of Makassar, Makassar 90221, South Sulawesi, Indonesia
Bibliografia
- [1] D. Trache, A.F. Tarchoun, M. Derradji, T.S. Hamidon, N. Masruchin, N. Brosse, M.H. Hussin, Nanocellulose: from fundamentals to advanced applications, Frontiers in Chemistry 8 (2020) 392. DOI: https://doi.org/10.3389/fchem.2020.00392
- [2] P. Phanthong, P. Reubroycharoen, X. Hao, G. Xu, A. Abudula, G. Guan, Nanocellulose: extraction and application, Carbon Resources Conversion 1/1 (2018) 32-43. DOI: https://doi.org/10.1016/j.crcon.2018.05.004
- [3] H. Abushammala, J. Mao, A review of the surface modification of cellulose and nanocellulose using aliphatic and aromatic mono- and di-isocyanates, Molecules 24/15 (2019) 2782. DOI: https://doi.org/10.3390/molecules24152782
- [4] A. Dufresne, Nanocellulose: Potential Reinforcement in Composites, in: M.J. John, S. Thomas (eds.), Natural Polymers: Volume 2: Nanocomposites, Royal Society of Chemistry, Croydon, 2012, 1-32.
- [5] R.S.A. Ribeiro, B.C. Pohlmann, V. Calado, N. Bojorge, N. Pereira Jr., Production of nanocellulose by enzymatic hydrolysis: trends and challenges, Engineering in Life Sciences 19/10 (2019) 279-291. DOI: https://doi.org/10.1002/elsc.201800158
- [6] J.B. Daud, K.-Y. Lee, Surface Modification of Nanocellulose, in H. Kargarzadeh, I. Ahmad, S. Thomas, A. Dufresne (eds.), Handbook of Nanocellulose and Cellulose Nanocomposites, First Edition, Wiley, Weinheim, 2017, 101-122.
- [7] H.C. Kim, D. Kim, J.Y. Lee, L. Zhai, J. Kim, Efect of wet spinning and stretching to enhance mechanical properties of cellulose nanofiber filament, International Journal of Precision Engineering and Manufacturing ‒ Green Technology 6 (2019) 567-575. DOI: https://doi.org/10.1007/s40684-019-00070-z
- [8] M.P. Arrieta, E. Fortunati, N. Burgos, M.A. Peltzer, J. López, L. Peponi, Nanocellulose-Based Polymeric Blends for Food Packaging Applications, in D. Puglia, E. Fortunati, J.M. Kenny (eds.), Multifunctional Polymeric Nanocomposites Based on Cellulosic Reinforcements, William Andrew, Oxford, 2016, 205- 245.
- [9] H.P.S. Abdul Khalil, A.H. Bhat, A.F. Ireana Yusra, Green composites from sustainable cellulose nanofibrils: a review, Carbohydrate Polymers 87/2 (2012) 963-979. DOI: https://doi.org/10.1016/j.carbpol.2011.08.078
- [10] T. Abitbol, A. Rivkin, Y. Cao, Y. Nevo, E. Abraham, T. Ben-Shalom, S. Lapidot, O. Shoseyov, Nano-cellulose, a tiny fiber with huge applications, Current Opinion in Biotechnology 39 (2016) 76-88. DOI: https://doi.org/10.1016/j.copbio.2016.01.002
- [11] S. Mondal, A review on nanocellulose polymer nanocomposites, Polymer-Plastics Technology and Engineering 57/13 (2017) 1377-1391. DOI: https://doi.org/10.1080/03602559.2017.1381253
- [12] F. Fahma, A. Takemura, Y. Saito, Acetylation and stepwise solvent-exchange to modify hydrophilic cellulose whiskers to polychloroprene-compatible nanofiller, Cellulose 21/4 (2014) 2519-2527. DOI: https://doi.org/10.1007/s10570-014-0294-3
- [13] I.W. Arnata, Suprihatin, F. Fahma, N. Richana, T.C. Sunarti, Cationic modification of nanocrystalline cellulose from sago fronds, Cellulose 27/6 (2020) 3121-3141. DOI: https://doi.org/10.1007/s10570-019- 02955-3
- [14] K. Littunen, J.S. de Castro, A. Samoylenko, Q. Xu, S. Quaggin, S. Vainio, J. Seppälä, Synthesis of cationized nanofibrillated cellulose and its antimicrobial properties, European Polymer Journal 75 (2016) 116-124. DOI: https://doi.org/10.1016/j.eurpolymj.2015.12.008
- [15] T. Abitbol, H. Marway, E.D. Cranston, Surface modification of cellulose nanocrystals with cetyltrimethylammonium bromide, Nordic Pulp and Paper Research Journal 29/1 (2014) 46-57. DOI: https://doi.org/10.3183/npprj-2014-29-01-p046-057
- [16] F.C. Silva, C.B.L. Luciano, D.S.B. Roosevelt, A.O. Josy, C.S.F. Edson, Use of Cellulosic Materials as Dye Adsorbents ‒ A Prospective Study, in: M. Poletto, H.L. Ornaghi Jr. (eds.), Cellulose: Fundamental Aspects and Current Trends, InTech, Rijeka, 2015, 115-132.
- [17] M. Nasir, R. Hashim, O. Sulaiman, M. Asim, Nanocellulose: Preparation Methods and Applications, in: M. Jawaid, S. Boufi, H.P.S. Abdul Khalil (eds.), Cellulose-Reinforced Nanofibre Composites: Production, Properties and Applications, Woodhead Publishing, Duxford, 2017, 261-271.
- [18] S. Naz, J.S. Ali, M. Zia, Nanocellulose isolation characterization and applications: a journey from non-remedial to biomedical claims, Bio-Design and Manufacturing 2 (2019) 187-212. DOI: https://doi.org/10.1007/s42242-019-00049-4
- [19] K.Y. Lee, Y. Aitomäki, L.A. Berglund, K. Oksman, A. Bismarck, On the use of nanocellulose as reinforcement in polymer matrix composites, Composites Science and Technology 105 (2014) 15-27. DOI: https://doi.org/10.1016/j.compscitech.2014.08.032
- [20] N. Lavoine, I. Desloges, A. Dufresne, J. Bras, Microfibrillated cellulose-its barrier properties and applications in cellulosic materials: a review, Carbohydrate Polymers 90/2 (2012) 735-764. DOI: https://doi.org/10.1016/j.carbpol.2012.05.026
- [21] P. Thomas, T. Duolikun, N.P. Rumjit, S. Moosavi, C.W. Lai, M.R. Bin Johan, L.B. Fen, Comprehensive review on nanocellulose: Recent developments, challenges and future prospects, Journal of the Mechanical Behavior of Biomedical Materials 110 (2020) 103884. DOI: https://doi.org/10.1016/j.jmbbm.2020.103884
- [22] L.E. Cullen, C. Macfarlane, Comparison of cellulose extraction methods for analysis of stable isotope ratios of carbon and oxygen in plant material, Tree Physiology 25/5 (2005) 563-569. DOI: https://doi.org/10.1093/treephys/25.5.563
- [23] C.A. Hubbell, A.J. Ragauskas, Effect of acid-chlorite delignification on cellulose degree of polymerization, Bioresource Technology 101/19 (2010) 7410-7415. DOI: https://doi.org/10.1016/j.biortech.2010.04.029
- [24] N. Johar, I. Ahmad, A. Dufresne, Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk, Industrial Crops and Products 37/1 (2012) 93-99. DOI: https://doi.org/10.1016/j.indcrop.2011.12.016
- [25] S. Rebouillat, F. Pla, State of the art manufacturing and engineering of nanocellulose: a review of available data and industrial applications, Journal of Biomaterials and Nanobiotechnology 4/2 (2013) 165-188. DOI: http://doi.org/10.4236/jbnb.2013.42022
- [26] R.J. Moon, A. Martini, J. Nairn, J. Simonsen, J. Youngblood, Cellulose nanomaterials review: structure, properties and nanocomposites, Chemical Society Reviews 40/7 (2011) 3941-3994. DOI: https://doi.org/10.1039/C0CS00108B
- [27] F. Fahma, S. Iwamoto, N. Hori, T. Iwata, A. Takemura, Effect of pre-acid-hydrolysis treatment on morphology and properties of cellulose nanowhiskers from coconut husk, Cellulose 18/2 (2011) 443-450. DOI: https://doi.org/10.1007/s10570-010-9480-0
- [28] A.J. Uddin, J. Araki, Y. Gotoh, Characterization of the poly(vinyl alcohol)/cellulose whisker gel spun fibers, Composites Part A: Applied Science and Manufacturing 42/7 (2011) 741-747. DOI: https://doi.org/10.1016/j.compositesa.2011.02.012
- [29] M.R.K. Sofla, R.J. Brown, T. Tsuzuki, T.J. Rainey, A comparison of cellulose nanocrystals and cellulose nanofibres extracted from bagasse using acid and ball milling methods, Advances in Natural Sciences: Nanoscience and Nanotechnology 7/3 (2016) 035004. DOI: https://doi.org/10.1088/2043-6262/7/3/035004
- [30] J. Araki, M. Wada, S. Kuga, T. Okano, Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose, Colloids and Surfaces A: Physicochemical and Engineering Aspects 142/1 (1998) 75-82. DOI: https://doi.org/10.1016/S0927-7757(98)00404-X
- [31] M. Roman, W.T. Winter, Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose, Biomacromolecules 5/5 (2004) 1671-1677. DOI: https://doi.org/10.1021/bm034519+
- [32] N. Halib, F. Perrone, M. Cemazar, B. Dapas, R. Farra, M. Abrami, G. Chiarappa, G. Forte, F. Zanconati, G. Pozzato, L. Murena, N. Fiotti, R. Lapasin, L. Cansolino, G. Grassi, M. Grassi, Potential applications of nanocellulose-containing materials in the biomedical field, Materials (Basel) 10/8 (2017) 977. DOI: https://doi.org/10.3390/ma10080977
- [33] K. Das, D. Ray, N.R. Bandyopadhyay, T. Ghosh, A.K. Mohanty, M. Misra, A study of the mechanical, thermal and morphological properties of microcrystalline cellulose particles prepared from cotton slivers using different acid concentrations, Cellulose 16/5 (2009) 783-793. DOI: https://doi.org/10.1007/s10570-009- 9280-6
- [34] P. Lu, Y.L. Hsieh, Preparation and properties of cellulose nanocrystals: rods, spheres, and network, Carbohydrate Polymers 82/2 (2010) 329-336. DOI: https://doi.org/10.1016/j.carbpol.2010.04.073
- [35] T. Taniguchi, K. Okamura, New films produced from microfibrillated natural fibres, Polymer International 47 (1998) 291-294. DOI: https://doi.org/10.1002/(SICI)1097- 0126(199811)47:3%3C291::AID-PI11%3E3.0.CO;2-1
- [36] W. Chen, H. Yu, Y. Liu, P. Chen, M. Zhang, Y. Hai, Individualization of cellulose nanofibers from wood usinghigh-intensity ultrasonication combined with chemical pretreatments, Carbohydrate Polymers 83/4 (2011) 1804-1811. DOI: https://doi.org/10.1016/j.carbpol.2010.10.040
- [37] F. Fahma, O.P. Wening, N. Lisdayana, Purwoko, Sugiarto, Thermoplastic starch-PVA-cellulose nano-composite film for extending the shelf life of red chilli, IOP Conference Series Earth and Environmental Science 460 (2020) 012036. DOI: https://doi.org/10.1088/1755-1315/460/1/012036
- [38] T. Zimmermann, N. Bordeanu, E. Strub, Properties of nanofibrillated cellulose from different raw materials 79/4 (2010) 1086-1093. DOI: https://doi.org/10.1016/j.carbpol.2009.10.045
- [39] A. Chakraborty, M. Sain, M. Kortschot, Cellulose microfibrils: A novel method of preparation using high shear refining and cryocrushing, Holzforschung 59/1 (2005) 102-107. DOI: https://doi.org/10.1515/HF.2005.016
- [40] A. Ferrer, I. Filpponen, A. Rodríguez, J. Laine, O.J. Rojas, Valorization of residual empty palm fruit bunch fibers (EPFBF) by microfluidization: production of nanofibrillated cellulose and EPFBF nanopaper, Bioresource Technology 125 (2012) 249-255. DOI: https://doi.org/10.1016/j.biortech.2012.08.108
- [41] O. Nechyporchuk, M.N. Belgacem, J. Bras, Production of cellulose nanofibrils: a review of recent advances, Industrial Crops and Products 93 (2016) 2-25. DOI: https://doi.org/10.1016/j.indcrop.2016.02.016
- [42] H.P.S. Abdul Khalil, Y. Davoudpour, Md. Nazrul Islam, A. Mustapha, K. Sudesh, R. Dungani, M. Jawaid, Production and modification of nanofibrillated cellulose using various mechanical processes: a review, Carbohydrate Polymers 99 (2014) 649-665. DOI: https://doi.org/10.1016/j.carbpol.2013.08.069
- [43] S.-P. Lin, I.L. Calvar, J.M. Catchmark, J.-R. Liu, A. Demirci, K.-C. Cheng, Biosynthesis, production and applications of bacterial cellulose, Cellulose 20/5 (2013) 2191-2219. DOI: https://doi.org/10.1007/s10570-013-9994-3
- [44] D.K. Patel, S.D. Dutta, K.T. Lim, Nanocellulose-based polymer hybrids and their emerging applications in biomedical engineering and water purification, RSC Advances 9/33 (2019) 19143-19162. DOI: https://doi.org/10.1039/C9RA03261D
- [45] D. Abol-Fotouh, M.A. Hassan, H. Shokry, A. Roig, M.S. Azab, Abd El-Hady B. Kashyout, Bacterial nanocellulose from agro-industrial wastes: low-cost and enhanced production by Komagataeibacter saccharivorans MD1, Scientific Reports 10/1 (2020) 3491. DOI: https://doi.org/10.1038/s41598-020-60315-9 [46] M. Moniruzzaman, T. Ono, Separation and characterization of cellulose fibers from cypress wood treated with ionic liquid prior to laccase treatment, Bioresource Technology 127 (2013) 132-137. DOI: https://doi.org/10.1016/j.biortech.2012.09.113
- [47] H. Tibolla, F.M. Pelissari, F.C. Menegalli, Cellulose nanofibers produced from banana peel by chemical and enzymatic treatment, LWT - Food Science and Technology 59/2 (2014) 1311-1318. DOI: http://doi.org/10.1016/j.lwt.2014.04.011
- [48] Z. Karim, S. Afrin, Q. Husain, R. Danish, Necessity of enzymatic hydrolysis for production and functionalization of nanocelluloses, Critical Reviews in Biotechnology 37/3 (2017) 355-370. DOI: http://doi.org/10.3109/07388551.2016.1163322
- [49] S. Afrin, Z. Karim, Isolation and surface modification of nanocellulose: necessity of enzymes over chemicals, ChemBioEng Reviews 4/5 (2017) 289-303. DOI: https://doi.org/10.1002/cben.201600001
- [50] J. George, K.V. Ramana, A.S. Bawa, Siddaramaiah, Bacterial cellulose nanocrystals exhibiting high thermal stability and their polymer nanocomposites, International Journal of Biological Macromolecules 48/1 (2011) 50-57. DOI: https://doi.org/10.1016/j.ijbiomac.2010.09.013
- [51] M. Pääkkö, M. Ankerfors, H. Kosonen, A. Nykänen, S. Ahola, M. Österberg, J. Ruokolainen, J. Laine, P.T. Larsson, O. Ikkala, T. Lindström, Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels, Biomacromolecules 8/6 (2007) 1934-1941. DOI: https://doi.org/10.1021/bm061215p
- [52] M.L. Hassan, A.P. Mathew, E.A. Hassan, K. Oksman, Effect of pretreatment of bagasse pulp on properties of isolated nanofibers and nanopaper sheets, Wood and Fiber Science: Journal of the Society of Wood Science and Technology 42/3 (2010) 362-376.
- [53] F. Fahma, N. Hori, T. Iwata, A. Takemura, Preparation and characterization of polychloroprene nano-composites with cellulose nanofibers from oil palm empty fruit bunches as a nanofiller, Journal of Applied Polymer Science 131/8 (2014) 40159. DOI: https://doi.org/10.1002/APP.40159
- [54] M.T. Islam, M.M. Alam, M. Zoccola, Review on modification of nanocellulose for application in composites, International Journal of Innovative Research in Science, Engineering and Technology 2/10 (2013) 5444-5451.
- [55] Y. Habibi, L. Lucia, O. Rojas, Cellulose nanocrystals: chemistry, self-assembly, and applications, Chemical Reviews 110/6 (2010) 3479-3500. DOI: https://doi.org/10.1021/cr900339w
- [56] N. Lin, J. Huang, A. Dufresne, Preparation, properties and applications of polysaccharide nanocrystals in advanced functional nanomaterials: a review, Nanoscale 4/11 (2012) 3274-3294. DOI: https://doi.org/10.1039/c2nr30260h
- [57] A. Dufresne, Nanocellulose: From Nature to High Performance Tailored Materials, Walter de Gruyter GmbH, Berlin/Boston, 2012.
- [58] L. Heux, G. Chauve, C. Bonini, Nonflocculating and chiral-nematic self-ordering of cellulose microcrystals suspensions in non-polar solvents, Langmuir 16/21 (2000) 8210-8212. DOI: https://doi.org/10.1021/la9913957
- [59] Q. Zhou, H. Brumer, T.T. Teeri, Self-organization of cellulose nanocrystals adsorbed with xyloglucan oligosaccharide-poly(ethylene glycol)-polystyrene tri-block copolymer, Macromolecules 42/15 (2009) 5430- 5432. DOI: https://doi.org/10.1021/ma901175j
- [60] G.M. Gulitz, A.C. Paulo, New substrates for reliable enzymes: enzymatic modification of polymers, Current Opinion in Biotechnology 14/6 (2003) 577-582. DOI: https://doi.org/10.1016/j.copbio.2003.09.010
- [61] N.D. Luong, J.T. Korhonen, A.J. Soininen, J. Ruokolainen, L.-S. Johansson, J. Seppälä, Processable polyaniline suspensions through in situ polymerization onto nanocellulose, European Polymer Journal 49/2 (2013) 335-344. DOI: https://doi.org/10.1016/j.eurpolymj.2012.10.026 [62] A. Dufresne, Nanocellulose: a new ageless bionano-material, Materials Today 16/6 (2013) 220-227. DOI: https://doi.org/10.1016/j.mattod.2013.06.004
- [63] B.A. Bhanvase, S.H. Sonawane, Ultrasound assisted in situ emulsion polymerization for polymer nanocomposite: a review, Chemical Engineering and Processing: Process Intensification 85 (2014) 86-107. DOI: https://doi.org/10.1016/j.cep.2014.08.007
- [64] K. Oksman, Y. Aitomäki, A.P. Mathew, G. Siqueira, Q. Zhou, S. Butylina, S. Tanpichai, X. Zhou, S. Hooshmand, Review of the recent developments in cellulose nanocomposite processing, Composites Part A: Applied Science and Manufacturing 83 (2015) 2-18. DOI: https://doi.org/10.1016/j.compositesa.2015.10.041
- [65] F. Fahma, N. Hori, T. Iwata, A. Takemura, PVA nanocomposites reinforced with cellulose nanofibers from oil palm empty fruit bunches (OPEFBs), Emirates Journal of Food and Agriculture 29/5 (2017) 323-329. DOI: https://doi.org/10.9755/ejfa.2016-02-215
- [66] E. Robles, I. Urruzola, J. Labidi, L. Serrano, Surface-modified nanocellulose as reinforcement in poly(lactic acid) to conform new composites, Industrial Crops and Products 71 (2015) 44-53. DOI: http://doi.org/10.1016/j.indcrop.2015.03.075
- [67] K.R. Srivastava, S. Dixit, D.B. Pal, P.K. Mishra, P. Srivastava, N. Srivastava, A. Hashem, A.A. Alqarawi, E.F. Abd_Allah, Effect of nanocellulose on mechanical and barrier properties of PVA–banana pseudostem fiber composite films, Environmental Technology and Innovation 21 (2021) 101312. DOI: https://doi.org/10.1016/j.eti.2020.101312
- [68] N. Lisdayana, F. Fahma, T.C. Sunarti, E.S. Iriani, Thermoplastic Starch–PVA Nanocomposite Films Reinforced with Nanocellulose from Oil Palm Empty Fruit Bunches (OPEFBs): Effect of Starch Type, Journal of Natural Fibers 17/7 (2020) 1069-1080. DOI: https://doi.org/10.1080/15440478.2018.1558142
- [69] A. Sharma, M. Thakur, M. Bhattacharya, T. Mandal, S. Goswami, Commercial application of cellulose nano-composites - A review, Biotechnology Reports 21 (2019): e00316. DOI: https://doi.org/10.1016/j.btre.2019.e00316
- [70] F.V. Ferreira, I.F. Pinheiro, S.F. de Souza, L.H. Mei, L.M. Lona, Polymer composites reinforced with natural fibers and nanocellulose in the automotive industry: a short review, Journal of Composites Science 3/2 (2019) 51. DOI: https://doi.org/10.3390/jcs3020051
- [71] G. Koronis, A. Silva, M. Fontul, Green composites: A review of adequate materials for automotive applications, Composites Part B Engineering 44/1 (2013) 120-127. DOI: https://doi.org/10.1016/j.compositesb.2012.07.004
- [72] N. Lin, A. Dufresne, Nanocellulose in biomedicine: current status and future prospect, European Polymer Journal 59 (2014) 302-325. DOI: http://doi.org/10.1016/j.eurpolymj.2014.07.025
- [73] Food and Drug Administration, Pyrogens and Endotoxins Testing: Questions and Answers, In Guidance for Industry, FDA: Silver Spring, MD, USA, 2012.
- [74] Y. Xue, Z. Mou, H. Xiao, Nanocellulose as a sustainable biomass material: structure, properties, present status and future prospects in biomedical applications, Nanoscale 9/39 (2017) 14758-14781. DOI: https://doi.org/10.1039/c7nr04994c
- [75] T. Kovacs, V. Naish, B. O’Connor, C. Blaise, F. Gagné, L. Hall, V. Trudeau, P. Martel, An ecotoxicological characterization of nanocrystalline cellulose (NCC), Nanotoxicology 4/3 (2010) 255-270. DOI: http://doi.org/10.3109/17435391003628713
- [76] R. Ilyas, S. Sapuan, M.L. Sanyang, M.R. Ishak, E. Zainudin, Nanocrystalline cellulose as reinforcement for polymeric matrix nanocomposites and its potential applications: a review, Current Analytical Chemistry 14/3 (2018) 203-225. DOI: http://doi.org/10.2174/1573411013666171003155624
- [77] M.J.D. Clift, E.J. Foster, D. Vanhecke, D. Studer, P. Wick, P. Gehr, B. Rothen-Rutishauser, C. Weder, Investigating the Interaction of Cellulose Nanofibers Derived from Cotton with a Sophisticated 3D Human Lung Cell Coculture, Biomacromolecules 12/10 (2011) 3666-3673. DOI: https://doi.org/10.1021/bm200865j
- [78] J. Vartiainen, T. Pöhler, K. Sirola, L. Pylkkänen, H. Alenius, J. Hokkinen, U. Tapper, P. Lahtinen, A. Kapanen, K. Putkisto, P. Hiekkataipale, P. Eronen, J. Ruokolainen, A. Laukkanen, Health and environmental safety aspects of friction grinding and spray drying of microfibrillated cellulose, Cellulose 18/3 (2011) 775-786. DOI: https://doi.org/10.1007/s10570-011-9501-7
- [79] T. Hakkarainen, R. Koivuniemi, M. Kosonen, C. Escobedo-Lucea, A. Sanz-Garcia, J. Vuola, J. Valtonen, P. Tammela, A. Mäkitie, K. Luukko, M. Yliperttula, H. Kavola, Nanofibrillar cellulose wound dressing in skin graft donor site, Journal of Controlled Release 244/B (2016) 292-301. DOI: http://doi.org/10.1016/j.jconrel.2016.07.053
- [80] N. Lin, J. Huang, P.R. Chang, L. Feng, J. Yu, Effect of polysaccharide nanocrystals on structure, properties, and drug release kinetics of alginate-based microspheres, Colloids and Surfaces B: Biointerfaces 85/2 (2011) 270-279. DOI: https://doi.org/10.1016/j.colsurfb.2011.02.039
- [81] A. Khan, T. Huq, R.A. Khan, B. Riedl, M. Lacroix, Nanocellulose-based composites and bioactive agents for food packaging, Critical Reviews in Food Science and Nutrition 54/2 (2014) 163-174. DOI: https://doi.org/10.1080/10408398.2011.578765
- [82] J.-H. Kim, B.S. Shim, H.S. Kim, Y.-J. Lee, S.-K. Min, D. Jang, Z. Abas, J. Kim, Review of nanocellulose for sustainable future materials, International Journal of Precision Engineering and Manufacturing-Green Technology 2/2 (2015) 197-213. DOI: https://doi.org/10.1007/s40684-015-0024-9
- [83] J.-W. Rhim, P.K. Ng, Natural biopolymer-based nanocomposite films for packaging applications, Critical Reviews in Food Science and Nutrition 47/4 (2007) 411-433. DOI: https://doi.org/10.1080/10408390600846366
- [84] F. Vilarinho, A.S. Silva, M.F. Vaz, J.P. Farinha, Nano-cellulose: a benefit for green food packaging, Critical Reviews in Food Science and Nutrition 58/9 (2018) 1526-1537. DOI: https://doi.org/10.1080/10408398.2016.1270254
- [85] H.P.S. Abdul Khalil, Y. Davoudpour, C.K. Saurabh, Md.S. Hossain, A.S. Adnan, R. Dungani, M.T. Paridah, Md.Z.I. Sarker, M.R.N. Fazita, M.I. Syakir, M.K.M. Haafiz, A review on nanocellulosic fibres as new material for sustainable packaging: process and applications, Renewable and Sustainable Energy Reviews 64 (2016) 823-836. DOI: https://doi.org/10.1016/j.rser.2016.06.072
- [86] F. Fahma, Sugiarto, T.C. Sunarti, S.M. Indriyani, N. Lisdayana, Thermoplastic cassava starch-PVA composite films with cellulose nanofibers from oil palm empty fruit bunches as reinforcement agent, International Journal of Polymer Science 2017 (2017) 2745721. DOI: https://doi.org/10.1155/2017/2745721
- [87] M.D. Sanchez-Garcia, J.M. Lagaron, On the use of plant cellulose nanowhiskers to enhance the barrier properties of polylactic acid, Cellulose 17/5 (2010) 987-1004. DOI: https://doi.org/10.1007/s10570-010- 9430-x
- [88] F.A.G.S. Silva, F. Dourado, M. Gama, F. Poças, Nano-cellulose Bio-Based Composites for Food Packaging. Nanomaterials (Basel) 10/10 (2020) 2041. DOI: https://doi.org/10.3390/nano10102041
- [89] B.N. Jung, H.W. Jung, D.H. Kang, G.H. Kim, M. Lee, J.K. Shim, S.W. Hwang, The fabrication of flexible and oxygen barrier cellulose nanofiber/polylactic acid nanocomposites using cosolvent system, Journal of Applied Polymer Science 137/47 (2020) 49536. DOI: https://doi.org/10.1002/app.49536
- [90] S.S. Nair, J. Zhu, Y. Deng, A.J. Ragauskas, High performance green barriers based on nanocellulose, Sustain Chem Process 2 (2014) 23. DOI: https://doi.org/10.1186/s40508-014-0023-0
- [91] Z. Song, H. Xiao, Y. Zhao, Hydrophobic-modified nano-cellulose fiber/PLA biodegradable composites for lowering water vapor transmission rate (WVTR) of paper, Carbohydrate Polymers 111 (2014) 442-448. DOI: https://doi.org/10.1016/j.carbpol.2014.04.049
- [92] W. Yang, H. Bian, L. Jiao, W. Wu, Y. Deng, H. Dai, High wet-strength, thermally stable and transparent TEMPO-oxidized cellulose nanofibril film via cross-linking with poly-amide epichlorohydrin resin, RSC Advances 7/50 (2017) 31567-31573. DOI: https://doi.org/10.1039/c7ra05009g
- [93] W. Li, S. Wang, W. Wang, C. Qin, M. Wu, Facile preparation of reactive hydrophobic cellulose nanofibril film for reducing water vapor permeability (WVP) in packaging applications, Cellulose 26 (2019) 3271-3284. DOI: https://doi.org/10.1007/s10570-019- 02270-x
- [94] M. Shimizu, T. Saito, A. Isogai, Water-resistant and high oxygen-barrier nanocellulose films with inter-fibrillar cross-linkages formed through multivalent metal ions, Journal of Membrane Science 500 (2016) 1- 7. DOI: https://doi.org/10.1016/j.memsci.2015.11.002
- [95] Y. Yang, H. Liu, M. Wu, J. Ma, P. Lu, Bio-based antimicrobial packaging from sugarcane bagasse nanocellulose/nisin hybrid films, International Journal of Biological Macromolecules 161 (2020) 627-635. DOI: https://doi.org/10.1016/j.ijbiomac.2020.06.081
- [96] C. Moreirinha, C. Vilela, N.H.C.S. Silva, R.R.J. Pinto, A. Almeida, M.A.M. Rocha, C.S.R. Freire, Antioxidant and antimicrobial films based on brewers spent grain arabinoxylans, nanocellulose and feruloylated compounds for active packaging, Food Hydrocolloids 108 (2020) 105836. DOI: https://doi.org/10.1016/j.foodhyd.2020.105836
- [97] S.M. Costa, D.P. Ferreira, P. Teixeira, L.F. Ballesteros, J. Teixeira, R. Fangueiro, Active natural-based films for food packaging applications: The combined effect of chitosan and nanocellulose. International Journal of Biological Macromolecules 177 (2021) 241-251. DOI: https://doi.org/10.1016/j.ijbiomac.2021.02.105
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6fec28cb-3ebb-4553-aaae-e891f9153bbb