PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Performance Analysis Based on Experimental Data of Backpressure Steam Turbine for Cogeneration in Saturated Steam Applications

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper aims to validate the performance capabilities of a Pressure Reducing Turbine (PRT) with respect to initial predictions based on analytic calculations. The designed equipment was installed in a beverage facility, located in Brazil. The validation procedure consists of analyzing the data collected in several periods of PRT’s operation, accessed remotely via an online server. The analysis of empirical data identifies the behavior of two key variables: generated power and effective efficiency. However, the observed boundary conditions differed significantly from expected values, forcing the turbine to operate in off-design conditions. The turbine model was hence refined and used to predict the PRT’s performance in such conditions. Results showed satisfactory accuracy for both power and efficiency predictions.
Rocznik
Strony
274--292
Opis fizyczny
Bibliogr. 26 poz., fot., rys., tab., wykr.
Twórcy
  • PROSUMIR – Heat Waste Recovery, Porto Alegre, Brazil
  • PROSUMIR – Heat Waste Recovery, Porto Alegre, Brazil
autor
  • CPFL Energia, Campinas, Brazil
  • CPFL Energia, Campinas, Brazil
autor
  • CPFL Energia, Campinas, Brazil
Bibliografia
  • 1. Empresa de Pesquisa Energética (Brasil): Avaliação da Eficiência Energética para os próximos 10 anos (2012-2021). Série de Estudos de Demanda. Rio de Janeiro, 2012.
  • 2. Empresa de Pesquisa Energética (Brasil): Brazilian Energy Balance 2020 Year 2019. Rio de Janeiro, 2020.
  • 3. Confederação Nacional da Indústria: Mapa estratégico da indústria 2018-2022. Brasília, Brasil, 2018.
  • 4. International Energy Agency: World Energy Outlook 2019. Paris, France, 2019.
  • 5. França, G Soares, LN 2005. Análise exergética de válvulas redutoras de pressão visando cogeração. Science & Engineering Journal. 15 (2), 1-6.
  • 6. Van Wylen, GJ 2013. Fundamentos da Termodinâmica. Blucher.
  • 7. Thomazoni, AL Schneider, PS Tuo, J Guillen, JA Ge, Q Souza, TF 2019. Performance assessment of an alternative for energy efficiency in saturated steam systems. Proceedings of ECOS 2019 – The 32nd International Conference on Efficiency, Cost, Optimization, Simulation and Environmental impact of energy systems. Wroclaw, Poland.
  • 8. Spirax Sarco 2014. Microturbine Technology. Cheltenham.
  • 9. Chaibakhsh, A & Ghaffari, A 2008. Steam turbine model. Simulation Modelling Practice and Theory 16(9), 1145–1162. doi:10.1016/j.simpat.2008.05.017.
  • 10. Sun, L & Smith, R 2015. Performance Modeling of New and Existing Steam Turbines. Industrial & Engineering Chemistry Research 54(6), 1908–1915. doi:10.1021/ie5032309.
  • 11. Muhlhauser, HJ 1978. Steam Turbines for District Heating in Nuclear Power Plants. Nucl. Technol 38, 113–119.
  • 12. Júnior, J 2003: Análise Energética E Exergética De Um Ciclo Rankine Com Aquecimento Distrital: Estudo De Uma Planta Termelétrica. Universidade Federal do Rio Grande do Sul.
  • 13. Nguyen, HD Alpy, N Haubensack, D and Barbier, D 2020. Insight on electrical and thermal powers mix with a Gen2 PWR: Rankine cycle performances under low to high temperature grade cogeneration. Energy 202.
  • 14. Watanabe, E, Tanaka, Y Nakano, T Ohyama, H Tanaka, T Miyawaki, T Tsutsumi, M Shinohara, T 2003. Development of new high efficiency steam turbine. Mitsubishi Heavy Industries Ltd. Technical Review 40(4).
  • 15. Quinkertz, R Thiemann, T & Gierse, K 2011. Validation of Advanced Steam Turbine Technology: A Case Study of an Ultra Super Critical Steam Turbine Power Plant. 7. Turbomachinery, Parts A, B, and C. doi:10.1115/gt2011-45816.
  • 16. Spencer, RC Cotton, KC and Cannon, CN 1974. A Method for Predicting the Performance of Steam Turbine-Generators 16500 kW and Larger.
  • 17. Flôres, LFV 2016. Desenvolvimento de metodologia para diagnóstico térmico de turbinas a vapor em ciclo combinado com cogeração. Universidade Federal de Itajubá Instituto.
  • 18. D. H. Cooke: On prediction of off-design multistage turbine pressures by Stodola’s ellipse. Proc. ASME, pp. 1-6, 1984.
  • 19. Ghaedi, A Daneshvar, K and Khazraii Y 2002. Analysis of the dynamic characteristics of a combined-cycle power plant. IOSR J. Eng. 27(12), 1085-1098.
  • 20. Schegliáiev, AV 19748. Turbinas De Vapor: La Teoría Del Proceso Térmico y Las Construcciones De Turbinas. Mir Moscou.
  • 21. Astvatsaturova, AA Zorin, VM and Trukhnii, AD 2015. Assessment of steam work efficiency as applied to a turbine being designed. Therm. Eng. 62(1), 26-33.
  • 22. Bresolin, CS Schneider, PS Vielmo, HA and França FHR 2006. Application of Steam Turbines Simulation Models in Power Generation Systems. Rev. Eng. Térmica, 5(1), 73.
  • 23. Shliakhin, PN 2005. Steam turbines: theory and design. University Press of the Pacific.
  • 24. Kim, JS Kim, DY and Kim, YT 2019. Experiment on radial inflow turbines and performance prediction using deep neural network for the organic Rankine cycle. Appl. Therm. Eng. 149(11), 633-643.
  • 25. Dettori, S Colla, V Salerno, G., and Signorini, A 2017. Steam Turbine Models for Monitoring Purposes, Energy Procedia, 105, 524-529.
  • 26. Liu, Z and Karimi, IA 2020. Gas turbine performance prediction via machine learning, Energy 192.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6fe434db-ee4c-4dea-8f30-d4699dd9c3a4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.