Identyfikatory
Warianty tytułu
Quo Vadis NDT? – Prognoza przyszłości
Języki publikacji
Abstrakty
The here presented contribution will forecast the future of NDT, even if this is difficult, because of many uncertainties. Large NDT conferences offer the opportunity to statistically evaluate the most popular topics which are in the actual interest of the NDT community. The author, engaged as subject editor of the Journal NDT&E International, will discuss his experience with peer-reviewed papers too. Worldwide, especially politicians talk about the next industrial revolution, using «catchwords» like digitization, big data, robotics, artificial intelligence, high powerful computing, cloud computing, intelligent manufacturing, etc. We have a global competition; China alone will invest in R&D of artificial intelligence (AI) in the next five years 150 billion $US. However, all R&D projects to these topics are primarily not NDT developing programs. But, NDT will follow the mainstream and will participate in hardware and software developments, to adapt them for its own needs. The contribution discusses tendencies of developments, for instance, in additive manufacturing where NDT is utilized in real-time to feed-back control, to produce - «on-line closed-loop» - the quality. Two special innovations are discussed; one is to the non-linear phenomenon of Local Defect Resonances in visco-elastic materials, the other to Vertical-Cavity Surface-Emitting Lasers (VCSEL), a new, powerful, and flexible heat source in Thermal Testing.
Niniejsza praca przedstawia prognozę przyszłości badań nieniszczących (BN), nawet jeśli jest to trudne z powodu wielu niewiadomych. Duże konferencje dotyczące BN dają możliwość przeprowadzenia statystycznej oceny najpopularniejszych tematów, którymi aktualnie interesuje się społeczność BN. Autor, pełniący funkcję redaktora działowego w Journal NDT & E International, omówi również swoje doświadczenia z recenzowanymi artykułami. Na całym świecie, zwłaszcza politycy, mówią o kolejnej rewolucji przemysłowej, używając „haseł”, takich jak cyfryzacja, big data, robotyka, sztuczna inteligencja, obliczenia o dużej mocy, przetwarzanie w chmurze, inteligentna produkcja itp. Mamy globalną konkurencję a same Chiny zainwestują w badania i rozwój sztucznej inteligencji (AI) w ciągu najbliższych pięciu lat 150 miliardów dolarów. Wszystkie te projekty badawczo-rozwojowe z wymienionej tematyki nie dotyczą rozwoju BN. Jednakże, BN będą podążać za głównym nurtem i będą korzystać z rozwoju sprzętu i oprogramowania, adaptując je do własnych potrzeb. Artykuł omawia tendencje rozwojowe, na przykładzie sytuacji występującej w przypadku produkcji przyrostowej, gdzie BN są wykorzystywane w czasie rzeczywistym do sterowania sprzężeniem zwrotnym, zapewniającym jakość. Omówiono zostaną dwie innowacje: jedną z nich jest nieliniowe zjawisko lokalnych rezonansów wokół defektów w materiałach wiskoelastycznych, a drugim są lasery o emisji powierzchniowej z pionową wnęką rezonansową (VCSEL), nowe, mocne i adaptywne źródło wzbudzenia w badaniach termograficznych.
Czasopismo
Rocznik
Tom
Strony
6--17
Opis fizyczny
Bibliogr. 48 poz., rys., wykr., tab.
Twórcy
autor
- Senior Scientific Consultant at the Chair of NDT and Quality Assurance (LZfPQ), Saar-University, Saarbrücken, Germany
Bibliografia
- [1] https://www.journals.elsevier.com/ndt-and-e-international
- [2] R.K. Neumann et al., “Hardware equipment for real-time determination of data gained from A-scans in automatic ultrasonic inspection for flaw reconstruction by ALOK”, IEEE Ultrasonic Symposium 1981, Proceedings, paper G8, pp. 985- 988, 1981.
- [3] H. Willems, K. Germadonk, J.Franz, and O.A. Barbian, “Automated evaluation of ultrasonic testing of transmission pipelines”, Technical Committee for Ultrasound of the German NDT Society (DGZfP), Report 62, pp. 111-118, 1967.
- [4] J. Staudt, G. Schäfer, U. Sauer, J. Manz, G. Bach, “Operational experience with a modern heavy plate test system with high test sensitivity”, German NDT Society (DGZfP), Annual Meeting, Celle, Lecture 52, 1999.
- [5] W. Gebhardt, F. Bonitz, H. Woll, V. Schmitz, Ultrasonic field control, error classification and error reconstruction using phased arrays; Materialprüfung 21, vol 12, pp. 437-443, 1979.
- [6] [Insight, Vol 61, No 7, page 423, 2019.
- [7] http://www.extende.com/available-civa-version
- [8] D. W. Prine, “Synthetic Aperture Ultrasonic Imaging”, Proceedings of the 287. Symposium Engineering Applications of Holography, Society of Photo-optical Instrumentation Engineers, 1972.
- [9] C. B. Burckhardt, P.A. Grandchamp, H. Hoffmann, “Methods for Increasing the Lateral Resolution of B-Scan”, Acoustical Imaging, Vol. 5, ed. P.S. Green, Plenum Press. New York, 1974.
- [10] L. J. Busse, H. D. Collins, S. R. Doctor, “Review and discussion of the development of Synthetic Aperture Focusing Technique for Ultrasonic Testing (SAFT-UT)”, Nuclear Regulatory Commission Report NUREG/CR-3625, PNNL-4957, R5, PNNL, Richland, 1984.
- [11] J. R. Frederick, R. C. Seydel, “Improved Ultrasonic NonDestructive Testing of Pressure Vessels”, University of Michigan, Nuclear Regulatory Commission Report NUREG0007-1, 1976.
- [12] V. Schmitz V, W. Müller, G. Schäfer, “A New Ultrasonic Imaging System”, Materials Evaluation, Vol 40, number101, 1983.
- [13] S. R. Doctor, G. J. Schuster, L.D. Reid, T. E. Hall, “Real-Time 3-D SAFT-UT System Evaluation and Validation”, Nuclear Regulatory Commission Report NUREG/CR-6344, PNNL10571, Richland, 1996.
- [14] R.E. Newnham, D.P. Skinner and L.E. Cross, Mater. Res. Bull., 13, 525-536, 1978.
- [15] A. Boulavinov, “The Sampling Phased Array”, PhD.-Thesis at Saar University, Faculty of Technology, Saarbrücken, 2005.
- [16] C. Holmes, B. W. Drinkwater, and P. D. Wilcox, “Postprocessing of the full matrix of ultrasonic transmit-receive array data for non-destructive evaluation”, NDT&E International, 38, 701-711, 2005.
- [17] O. Oralcan et al., IEEE Trans. Ultrason., Ferroelec. & Freq. Contr., Vol 49, pp. 1596-1610, 2002.
- [18] C. Holmes, B. W. Drinkwater, and P.D. Wilcox, Insight, Vol 46, number 11, pp. 677-680, 2005.
- [19] P. D. Wilcox, Caroline Holmes, B. W. Drinkwater, “Enhanced defect detection and characterization by signal processing of ultrasonic array data”; ECNDT, paper Fri 1.1.4, https:// www.researchgate.net/publication/239583509, 2006.
- [20] Gerd Dobmann, Jochen Kurz, and Sergey Pudovikov, “Determination of the probability of failure in a sensitivity study based on a probabilistic FAD-approach and PODcurves using PAUT”, E-Journal of Advanced Maintenance (EJAM), Japan Society of Maintenology, Vol.7-1, pp. 20-33, 2015.
- [21] K.-J. Langenberg, R. Marklein, and K. Mayer, “Ultrasonic nondestructive testing of materials - Theoretical Foundations”, Oldenbourg, ISBN 978-1-4398-5588-1, 2009.
- [22] A. Shlivinski, K.-J. Langenberg, and R. Marklein, “Ultrasonic modeling and imaging in dissimilar welds” paper 49, vol 2, 30th MPA Seminar, Stuttgart, 2004.
- [23] A. Zimmer, “Non-destructive test methods with elastic and electromagnetic waves”; PhD.-Thesis University of Kassel, 2007.
- [24] [C. Annis, “Statistical best-practices for building Probability of Detection (POD) models”, R package, mh1823, version 2.5.4.4, http://StatisticalEngineering.com/mh1823/, 2010.
- [25] Chaoyang PENG, et al., “The sizing of small surface-breaking fatigue cracks using ultrasonic arrays”, NDT&E International 99, pp. 64-71, 2018.
- [26] A. M. Turing, “Computing machinery and Intelligence”, Mind, New Series, Vol. 59, No. 236, pp. 433-460; http:// www.jstor.org/stable/2251299, 1950.
- [27] M. H. Loew, R. Shankar, and A. N. Mucciardi, “Theory of the Cepstrum and Applications to NOE”, Semi-annual Report Number 1, prepared for Rockwell Science Center under Purchase Order 76-62780, 1975.
- [28] R. Shankar, and A. N. Mucciardi, “Application of Adaptive Learning Networks to Establish Relationships Between Analytical and Empirical NDA Methods”, Interim Progress Report No. 1, prepared for Rockwell Science Center under Purchase Order 76-62780, 1976.
- [29] A. N. Mucciardi, S. S. Lane, and G. J. Posakony, “Overview of Planned Ultrasonic Imaging System with Automatic ALN Data Interpretation”, Proceedings of the ARPA/AFML Review of Progress in Quantitative NDE, July 1977, 1978.
- [30] https://www.xing.com/communities/groups/ki-kuenstlicheintelligenz-719f-1103114/posts
- [31] H.J. Warnecke, “Production planning, production control in the CIM realization”, 18th IPA Workshop, 22 and 23 April 1986 in Stuttgart, Volume 6 of IPA-IAO - Research and Practice Conference Reports, Springer Berlin Heidelberg, ISBN 3540166742, 9783540166740, 1986.
- [32] D. E. Hall, G. Birnbaum, “Intelligent Processing of Materials, Technical activities 1994” NAS-NRC Assessment Panel, April 6-7, National Institute of Standards and Technology NISTIR5578, 1995.
- [33] G. Dobmann, et al., “Barkhausen noise and related measurements in ferromagnetic materials”, Topics in NDE, Vol 1, Sensing for Materials Characterization, Processing and Manufacturing, G. Birnbaum and G. A. Auld (Tech. Edit.), ASNT, ISBN 1-57117-067-7, 1998.
- [34] B. Xing, W. J. Gao, “Introduction to Computational Intelligence, Innovative Computational Intelligence: A Rough Guide to 134 Clever Algorithms”. Intelligent Systems Reference Library, vol 62, Springer, https://link.springer.com/ chapter/10.1007/978-3-319-03404-1_1, 2014.
- [35] https://www.idg.de/ueber-uns/
- [36] https://www.luft hansa-industry-solutions.com/de-de/ s t u d i e n / i d g - s t u d i e - m a c h i n e - l e a r n i n g - 2 0 1 9 / ?gclid=EAIaIQobChMIs9GjlKT_4wIVi813Ch15egK2EAAY AiAAEgJSB_D_BwE key findings
- [37] GlobalInfoResearch, Global Artificial Intelligence for Edge Devices Market 2019 by Company Regions Type and Application Forecast to 2024; Report RW00012714624
- [38] J. Vrana; “ZfP 4.0: The Fourth Revolution of Destruction-Free Testing: Interfaces, Networking, Feedback, New Markets and Integration into the Digital Factory”, ZFP-Zeitung of the German NDT Society, 2019.
- [39] https://www.sculpteo.com/blog/de/
- [40] https://de.wikipedia.org/wiki/3D-Druck
- [41] ASTM Work Item 47031, December 10, 2018, Concurrent Balloting of the Draft Standard Guide, April 25, 2019.
- [42] W. Du, Q. Bai, Y. Wang, and B. Zhang, “Eddy current detection of subsurface defects for additive/subtractive hybrid manufacturing”, The International Journal of Advanced Manufacturing Technology, https://doi.org/ 10.1007/s00170-017-1354-2, Springer-Verlag , 2017.
- [43] P. B. Nagy, L. Adler, Journal NDE, pp. 199-215, 1988.
- [44] I. Solodov; Enhancement of efficiency in vibrothermography and nonlinear ultrasonic NDT via local defect resonances (LDR), Proceedings 12th Int. Conf. of the Slovenian NDT society, Sept. 4-6, Potoroz, 2016.
- [45] M. Rahammer, “Detection of impact damage in fiber plastic composites utilizing resonant frequency sweep thermography”, PhD.-Thesis at the University of Stuttgart, p.50, 2018.
- [46] I. Solodov, M. Kreutzbruck, “Resonant Defects: A new approach to highly-sensitive ultrasound-activated NDT techniques”; Proceedings 19th World Conference on NDT, Munich, 2016.
- [47] https: / /onlinelibrar y.wiley.com /doi /epdf /10.1002 / latj.201400024, 2014.
- [48] P. Burgholzer, T. Berer, M. Ziegler, E. Thiel, S. Ahmadi, J. Gruber, G. May, G. Hendorfer; Blind structured illumination as excitation for super-resolution photothermal radiometry; 10.21611/quirt.2018.041, Proceedings 14th Quantitative Infrared Thermography Conference, Berlin, 2018.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6fe3a81f-72ce-44ca-9c94-3c29511aa263